These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


96 related items for PubMed ID: 16944929

  • 1. Protein bipartivity and essentiality in the yeast protein-protein interaction network.
    Estrada E.
    J Proteome Res; 2006 Sep; 5(9):2177-84. PubMed ID: 16944929
    [Abstract] [Full Text] [Related]

  • 2. Virtual identification of essential proteins within the protein interaction network of yeast.
    Estrada E.
    Proteomics; 2006 Jan; 6(1):35-40. PubMed ID: 16281187
    [Abstract] [Full Text] [Related]

  • 3. Gene essentiality, gene duplicability and protein connectivity in human and mouse.
    Liang H, Li WH.
    Trends Genet; 2007 Aug; 23(8):375-8. PubMed ID: 17512629
    [Abstract] [Full Text] [Related]

  • 4. Localized network centrality and essentiality in the yeast-protein interaction network.
    Park K, Kim D.
    Proteomics; 2009 Nov; 9(22):5143-54. PubMed ID: 19771559
    [Abstract] [Full Text] [Related]

  • 5. A local average connectivity-based method for identifying essential proteins from the network level.
    Li M, Wang J, Chen X, Wang H, Pan Y.
    Comput Biol Chem; 2011 Jun; 35(3):143-50. PubMed ID: 21704260
    [Abstract] [Full Text] [Related]

  • 6. Protein function, connectivity, and duplicability in yeast.
    Prachumwat A, Li WH.
    Mol Biol Evol; 2006 Jan; 23(1):30-9. PubMed ID: 16120800
    [Abstract] [Full Text] [Related]

  • 7. Why do essential proteins tend to be clustered in the yeast interactome network?
    Lu C, Hu X, Wang G, Leach LJ, Yang S, Kearsey MJ, Luo ZW.
    Mol Biosyst; 2010 May; 6(5):871-7. PubMed ID: 20567773
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Emergence of scale-free distribution in protein-protein interaction networks based on random selection of interacting domain pairs.
    Nacher JC, Hayashida M, Akutsu T.
    Biosystems; 2009 Feb; 95(2):155-9. PubMed ID: 19010382
    [Abstract] [Full Text] [Related]

  • 14. Essential core of protein-protein interaction network in Escherichia coli.
    Lin CC, Juan HF, Hsiang JT, Hwang YC, Mori H, Huang HC.
    J Proteome Res; 2009 Apr; 8(4):1925-31. PubMed ID: 19231892
    [Abstract] [Full Text] [Related]

  • 15. Cliques in mitotic spindle network bring kinetochore-associated complexes to form dependence pathway.
    Chen TC, Lee SA, Chan CH, Juang YL, Hong YR, Huang YH, Lai JM, Kao CY, Huang CY.
    Proteomics; 2009 Aug; 9(16):4048-62. PubMed ID: 19658104
    [Abstract] [Full Text] [Related]

  • 16. Computational analysis of human protein interaction networks.
    Ramírez F, Schlicker A, Assenov Y, Lengauer T, Albrecht M.
    Proteomics; 2007 Aug; 7(15):2541-52. PubMed ID: 17647236
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Subunit architecture of intact protein complexes from mass spectrometry and homology modeling.
    Taverner T, Hernández H, Sharon M, Ruotolo BT, Matak-Vinković D, Devos D, Russell RB, Robinson CV.
    Acc Chem Res; 2008 May; 41(5):617-27. PubMed ID: 18314965
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.