These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H, Gao Z, Zhang Q, Huang H, Ji X, Sun H, Dou C. Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [Abstract] [Full Text] [Related]
25. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Das P, Lei W, Aziz SS, Obbard JP. Bioresour Technol; 2011 Feb; 102(4):3883-7. PubMed ID: 21183340 [Abstract] [Full Text] [Related]
27. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H, Gao Z, Yin F, Ji X, Huang H. Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [Abstract] [Full Text] [Related]
28. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields. Zhang Z, Ji H, Gong G, Zhang X, Tan T. Bioresour Technol; 2014 Jul; 164():93-9. PubMed ID: 24841576 [Abstract] [Full Text] [Related]
29. Cell proliferation alterations in Chlorella cells under stress conditions. Rioboo C, O'Connor JE, Prado R, Herrero C, Cid A. Aquat Toxicol; 2009 Sep 14; 94(3):229-37. PubMed ID: 19679360 [Abstract] [Full Text] [Related]
33. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Adesanya VO, Davey MP, Scott SA, Smith AG. Bioresour Technol; 2014 Apr 14; 157():293-304. PubMed ID: 24576922 [Abstract] [Full Text] [Related]
34. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Mujtaba G, Choi W, Lee CG, Lee K. Bioresour Technol; 2012 Nov 14; 123():279-83. PubMed ID: 22940330 [Abstract] [Full Text] [Related]
35. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed. Han F, Huang J, Li Y, Wang W, Wang J, Fan J, Shen G. Bioresour Technol; 2012 Aug 14; 118():431-7. PubMed ID: 22717560 [Abstract] [Full Text] [Related]
36. Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods. Rashid N, Lee K, Mahmood Q. Bioresour Technol; 2011 Jan 14; 102(2):2101-4. PubMed ID: 20826084 [Abstract] [Full Text] [Related]
37. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Xie T, Xia Y, Zeng Y, Li X, Zhang Y. Bioresour Technol; 2017 Jun 14; 233():247-255. PubMed ID: 28285215 [Abstract] [Full Text] [Related]
38. Optimization of CO₂ bio-mitigation by Chlorella vulgaris. Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G. Bioresour Technol; 2013 Jul 14; 139():149-54. PubMed ID: 23648764 [Abstract] [Full Text] [Related]
39. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris. Woodworth BD, Mead RL, Nichols CN, Kolling DRJ. Bioresour Technol; 2015 Mar 14; 179():159-164. PubMed ID: 25543540 [Abstract] [Full Text] [Related]
40. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. Cheirsilp B, Suwannarat W, Niyomdecha R. N Biotechnol; 2011 Jul 14; 28(4):362-8. PubMed ID: 21255692 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]