These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Detection of novel gaseous states at the highly oriented pyrolytic graphite-water interface. Zhang XH, Zhang X, Sun J, Zhang Z, Li G, Fang H, Xiao X, Zeng X, Hu J. Langmuir; 2007 Feb 13; 23(4):1778-83. PubMed ID: 17279656 [Abstract] [Full Text] [Related]
5. Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes. Yang CW, Lu YH, Hwang IS. J Phys Condens Matter; 2013 May 08; 25(18):184010. PubMed ID: 23598995 [Abstract] [Full Text] [Related]
6. Nanoscale multiple gaseous layers on a hydrophobic surface. Zhang L, Zhang X, Fan C, Zhang Y, Hu J. Langmuir; 2009 Aug 18; 25(16):8860-4. PubMed ID: 19601567 [Abstract] [Full Text] [Related]
7. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles. Walczyk W, Schön PM, Schönherr H. J Phys Condens Matter; 2013 May 08; 25(18):184005. PubMed ID: 23598774 [Abstract] [Full Text] [Related]
8. Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite. Gorodetsky AA, Barton JK. Langmuir; 2006 Aug 29; 22(18):7917-22. PubMed ID: 16922584 [Abstract] [Full Text] [Related]
9. Thermodynamic stability of interfacial gaseous states. Zhang XH, Maeda N, Hu J. J Phys Chem B; 2008 Nov 06; 112(44):13671-5. PubMed ID: 18842008 [Abstract] [Full Text] [Related]
10. Understanding the stability of surface nanobubbles. Wang S, Liu M, Dong Y. J Phys Condens Matter; 2013 May 08; 25(18):184007. PubMed ID: 23598863 [Abstract] [Full Text] [Related]
11. Hydrogen nanobubble at normal hydrogen electrode. Nakabayashi S, Shinozaki R, Senda Y, Yoshikawa HY. J Phys Condens Matter; 2013 May 08; 25(18):184008. PubMed ID: 23598899 [Abstract] [Full Text] [Related]
12. Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: in situ atomic force microscopy and nanolithography study. Kolivoška V, Gál M, Hromadová M, Lachmanová S, Tarábková H, Janda P, Pospíšil L, Turoňová AM. Colloids Surf B Biointerfaces; 2012 Jun 01; 94():213-9. PubMed ID: 22341519 [Abstract] [Full Text] [Related]
13. Electrolytically generated nanobubbles on highly orientated pyrolytic graphite surfaces. Yang S, Tsai P, Kooij ES, Prosperetti A, Zandvliet HJ, Lohse D. Langmuir; 2009 Feb 03; 25(3):1466-74. PubMed ID: 19123858 [Abstract] [Full Text] [Related]
14. Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles. Walczyk W, Schönherr H. Langmuir; 2013 Jan 15; 29(2):620-32. PubMed ID: 23210847 [Abstract] [Full Text] [Related]
16. Kinetics of CO2 nanobubble formation at the solid/water interface. Yang J, Duan J, Fornasiero D, Ralston J. Phys Chem Chem Phys; 2007 Dec 28; 9(48):6327-32. PubMed ID: 18060162 [Abstract] [Full Text] [Related]
17. Instrumental effects on in situ electrochemical STM studies: an investigation of a current surge induced Pd deposit on HOPG. Tong XQ, Aindow M, Farr JP. Microsc Res Tech; 1996 May 01; 34(1):87-95. PubMed ID: 8859892 [Abstract] [Full Text] [Related]
18. Nanobubbles do not sit alone at the solid-liquid interface. Peng H, Hampton MA, Nguyen AV. Langmuir; 2013 May 21; 29(20):6123-30. PubMed ID: 23597206 [Abstract] [Full Text] [Related]
19. Theoretical study on the electrochemical behavior of norepinephrine at Nafion multi-walled carbon nanotubes modified pyrolytic graphite electrode. Song Y. Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug 21; 67(5):1169-77. PubMed ID: 17141559 [Abstract] [Full Text] [Related]
20. Ionic-complementary peptide-modified highly ordered pyrolytic graphite electrode for biosensor application. Yang H, Fung SY, Sun W, Mikkelsen S, Pritzker M, Chen P. Biotechnol Prog; 2008 Aug 21; 24(4):964-71. PubMed ID: 19194905 [Abstract] [Full Text] [Related] Page: [Next] [New Search]