These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


439 related items for PubMed ID: 1696124

  • 1. Calcium transport in bovine sperm mitochondria: effect of substrates and phosphate.
    Breitbart H, Wehbie R, Lardy HA.
    Biochim Biophys Acta; 1990 Jul 09; 1026(1):57-63. PubMed ID: 1696124
    [Abstract] [Full Text] [Related]

  • 2. Mitochondrial metabolism of pyruvate in bovine spermatozoa.
    Hutson SM, Van Dop C, Lardy HA.
    J Biol Chem; 1977 Feb 25; 252(4):1309-15. PubMed ID: 838719
    [Abstract] [Full Text] [Related]

  • 3. Calcium uptake by bovine epididymal spermatozoa is regulated by the redox state of the mitochondrial pyridine nucleotides.
    Vijayaraghavan S, Bhattacharyya A, Hoskins DD.
    Biol Reprod; 1989 Apr 25; 40(4):744-51. PubMed ID: 2752074
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Mitochondrial calcium uptake in bovine frozen sperm.
    Beorlegui NB, Córdoba M, Beconi MT.
    Biochem Mol Biol Int; 1995 Apr 25; 35(4):713-8. PubMed ID: 7627121
    [Abstract] [Full Text] [Related]

  • 6. Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue.
    Patel MS, Jomain-Baum M, Ballard FJ, Hanson RW.
    J Lipid Res; 1971 Mar 25; 12(2):179-91. PubMed ID: 4396562
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Mitochondrial transport processes and oxidation of NADH by hypotonically-treated boar spermatozoa.
    Calvin J, Tubbs PK.
    Eur J Biochem; 1978 Aug 15; 89(1):315-20. PubMed ID: 212270
    [Abstract] [Full Text] [Related]

  • 9. Correlation of the effects of citric acid cycle metabolites on succinate oxidation by rat liver mitochondria and submitochondrial particles.
    Hillar M, Lott V, Lennox B.
    J Bioenerg; 1975 Mar 15; 7(1):1-16. PubMed ID: 1176438
    [Abstract] [Full Text] [Related]

  • 10. Organic acid activation of the alternative oxidase of plant mitochondria.
    Millar AH, Wiskich JT, Whelan J, Day DA.
    FEBS Lett; 1993 Aug 30; 329(3):259-62. PubMed ID: 8365467
    [Abstract] [Full Text] [Related]

  • 11. The oxidation of glutamine and glutamate in relation to anion transport in enterocyte mitochondria.
    Evered DF, Masola B.
    Biochem J; 1984 Mar 01; 218(2):449-58. PubMed ID: 6143554
    [Abstract] [Full Text] [Related]

  • 12. Stimulation of citrate oxidation and transport in human placental mitochondria by L-malate.
    Swierczyński J, Scislowski P, Aleksandrowicz Z, Zelewski L.
    Acta Biochim Pol; 1976 Mar 01; 23(2-3):93-102. PubMed ID: 970039
    [Abstract] [Full Text] [Related]

  • 13. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ, Clark JB, Williamson JR.
    Biochem J; 1971 Jun 01; 123(1):83-95. PubMed ID: 5128666
    [Abstract] [Full Text] [Related]

  • 14. Transport mechanism for succinate and phosphate localized in the plasma membrane of bovine spermatozoa.
    Babcock DF, First NL, Lardy HA.
    J Biol Chem; 1975 Aug 25; 250(16):6488-95. PubMed ID: 808544
    [Abstract] [Full Text] [Related]

  • 15. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L, Bremer J, Davis EJ.
    J Biol Chem; 1976 Jan 25; 251(2):277-84. PubMed ID: 1245472
    [Abstract] [Full Text] [Related]

  • 16. Ethylmalonic acid impairs brain mitochondrial succinate and malate transport.
    Amaral AU, Cecatto C, Busanello EN, Ribeiro CA, Melo DR, Leipnitz G, Castilho RF, Wajner M.
    Mol Genet Metab; 2012 Jan 25; 105(1):84-90. PubMed ID: 22133302
    [Abstract] [Full Text] [Related]

  • 17. Metabolism of pyruvate and malate by isolated fat-cell mitochondria.
    Martin BR, Denton RM.
    Biochem J; 1971 Nov 25; 125(1):105-13. PubMed ID: 5158897
    [Abstract] [Full Text] [Related]

  • 18. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV, Ruiter J, Ijlst L, de Almeida IT, Wanders RJ.
    Mol Genet Metab; 2005 Nov 25; 86(3):344-52. PubMed ID: 16176879
    [Abstract] [Full Text] [Related]

  • 19. Rate equations and kinetics of uptake of alpha-aminoisobutyric acid and gamma-aminobutyric acid by mouse cerebrum slices incubated in media containing L(+)-lactate or a mixture of succinate, L-malate, and pyruvate as the energy source.
    Cohen SR.
    J Neurochem; 1985 Feb 25; 44(2):455-64. PubMed ID: 3965619
    [Abstract] [Full Text] [Related]

  • 20. Renal mitochondrial glutathione transport.
    Schnellmann RG.
    Life Sci; 1991 Feb 25; 49(5):393-8. PubMed ID: 1857187
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.