These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
482 related items for PubMed ID: 16962647
1. Palatal fusion - where do the midline cells go? A review on cleft palate, a major human birth defect. Dudas M, Li WY, Kim J, Yang A, Kaartinen V. Acta Histochem; 2007; 109(1):1-14. PubMed ID: 16962647 [Abstract] [Full Text] [Related]
2. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion. Xu X, Han J, Ito Y, Bringas P, Urata MM, Chai Y. Dev Biol; 2006 Sep 01; 297(1):238-48. PubMed ID: 16780827 [Abstract] [Full Text] [Related]
3. Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Nawshad A, LaGamba D, Hay ED. Arch Oral Biol; 2004 Sep 01; 49(9):675-89. PubMed ID: 15275855 [Abstract] [Full Text] [Related]
4. Fate-mapping of the epithelial seam during palatal fusion rules out epithelial-mesenchymal transformation. Vaziri Sani F, Hallberg K, Harfe BD, McMahon AP, Linde A, Gritli-Linde A. Dev Biol; 2005 Sep 15; 285(2):490-5. PubMed ID: 16109396 [Abstract] [Full Text] [Related]
5. Analysis of cell migration, transdifferentiation and apoptosis during mouse secondary palate fusion. Jin JZ, Ding J. Development; 2006 Sep 15; 133(17):3341-7. PubMed ID: 16887819 [Abstract] [Full Text] [Related]
6. Terminal differentiation of palatal medial edge epithelial cells in vitro is not necessarily dependent on palatal shelf contact and midline epithelial seam formation. Takigawa T, Shiota K. Int J Dev Biol; 2004 Jun 15; 48(4):307-17. PubMed ID: 15300511 [Abstract] [Full Text] [Related]
7. Cell behaviour and cleft palate in the mutant mouse, amputated. Flint OP. J Embryol Exp Morphol; 1980 Aug 15; 58():131-42. PubMed ID: 7441149 [Abstract] [Full Text] [Related]
8. PDGFR-alpha signaling is critical for tooth cusp and palate morphogenesis. Xu X, Bringas P, Soriano P, Chai Y. Dev Dyn; 2005 Jan 15; 232(1):75-84. PubMed ID: 15543606 [Abstract] [Full Text] [Related]
9. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Ito Y, Yeo JY, Chytil A, Han J, Bringas P, Nakajima A, Shuler CF, Moses HL, Chai Y. Development; 2003 Nov 15; 130(21):5269-80. PubMed ID: 12975342 [Abstract] [Full Text] [Related]
10. Morphological observations in normal primary palate and cleft lip embryos in the Kyoto collection. Diewert VM, Shiota K. Teratology; 1990 Jun 15; 41(6):663-77. PubMed ID: 2353315 [Abstract] [Full Text] [Related]
12. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice. Okano J, Suzuki S, Shiota K. Toxicol Appl Pharmacol; 2007 May 15; 221(1):42-56. PubMed ID: 17442359 [Abstract] [Full Text] [Related]
13. Regional heterogeneity in the developing palate: morphological and molecular evidence for normal and abnormal palatogenesis. Okano J, Suzuki S, Shiota K. Congenit Anom (Kyoto); 2006 Jun 15; 46(2):49-54. PubMed ID: 16732762 [Abstract] [Full Text] [Related]
14. Epithelial-mesenchymal transformation is the mechanism for fusion of the craniofacial primordia involved in morphogenesis of the chicken lip. Sun D, Baur S, Hay ED. Dev Biol; 2000 Dec 15; 228(2):337-49. PubMed ID: 11112334 [Abstract] [Full Text] [Related]
15. Molecular and morphologic changes during the epithelial-mesenchymal transformation of palatal shelf medial edge epithelium in vitro. Shuler CF, Guo Y, Majumder A, Luo RY. Int J Dev Biol; 1991 Dec 15; 35(4):463-72. PubMed ID: 1801871 [Abstract] [Full Text] [Related]
17. Epithelial changes of the nasal columella of the palatal slit and cleft palate defects in C57BL/6 mouse fetuses. Kusanagi T. Teratology; 1985 Feb 15; 31(1):111-7. PubMed ID: 3983853 [Abstract] [Full Text] [Related]