These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


433 related items for PubMed ID: 16965118

  • 21. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T, Kovalenko A.
    J Phys Chem B; 2011 Jan 20; 115(2):310-8. PubMed ID: 21166382
    [Abstract] [Full Text] [Related]

  • 22. Protein molecular dynamics with electrostatic force entirely determined by a single Poisson-Boltzmann calculation.
    Lu BZ, Chen WZ, Wang CX, Xu XJ.
    Proteins; 2002 Aug 15; 48(3):497-504. PubMed ID: 12112674
    [Abstract] [Full Text] [Related]

  • 23. Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide.
    Totrov M, Abagyan R.
    Biopolymers; 2001 Aug 15; 60(2):124-33. PubMed ID: 11455546
    [Abstract] [Full Text] [Related]

  • 24. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U, Caflisch A.
    J Comput Chem; 2008 Apr 15; 29(5):701-15. PubMed ID: 17918282
    [Abstract] [Full Text] [Related]

  • 25. Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients.
    Li H.
    J Chem Phys; 2009 Nov 14; 131(18):184103. PubMed ID: 19916594
    [Abstract] [Full Text] [Related]

  • 26. Quantum study of HIV-1 protease-bridge water interaction.
    Duan LL, Tong Y, Mei Y, Zhang QG, Zhang JZ.
    J Chem Phys; 2007 Oct 14; 127(14):145101. PubMed ID: 17935445
    [Abstract] [Full Text] [Related]

  • 27. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis.
    Gilson MK, Honig B.
    Proteins; 1988 Oct 14; 4(1):7-18. PubMed ID: 3186692
    [Abstract] [Full Text] [Related]

  • 28. A polarizable continuum approach for the study of heterogeneous dielectric environments.
    Iozzi MF, Cossi M, Improta R, Rega N, Barone V.
    J Chem Phys; 2006 May 14; 124(18):184103. PubMed ID: 16709093
    [Abstract] [Full Text] [Related]

  • 29. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations.
    Kato M, Pisliakov AV, Warshel A.
    Proteins; 2006 Sep 01; 64(4):829-44. PubMed ID: 16779836
    [Abstract] [Full Text] [Related]

  • 30. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E, Klähn M, Warshel A.
    J Phys Chem B; 2006 Feb 16; 110(6):2934-41. PubMed ID: 16471904
    [Abstract] [Full Text] [Related]

  • 31. Theoretical determination of the standard reduction potentials of pheophytin-a in N,N-dimethyl formamide and membrane.
    Mehta N, Datta SN.
    J Phys Chem B; 2007 Jun 28; 111(25):7210-7. PubMed ID: 17536851
    [Abstract] [Full Text] [Related]

  • 32. Exhaustive mutagenesis in silico: multicoordinate free energy calculations on proteins and peptides.
    Pitera JW, Kollman PA.
    Proteins; 2000 Nov 15; 41(3):385-97. PubMed ID: 11025549
    [Abstract] [Full Text] [Related]

  • 33. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX, Yu L, Gong LD, Liu C, Yang ZZ.
    J Chem Phys; 2011 May 21; 134(19):194115. PubMed ID: 21599052
    [Abstract] [Full Text] [Related]

  • 34. The dependence of electrostatic solvation energy on dielectric constants in Poisson-Boltzmann calculations.
    Tjong H, Zhou HX.
    J Chem Phys; 2006 Nov 28; 125(20):206101. PubMed ID: 17144745
    [Abstract] [Full Text] [Related]

  • 35. Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures.
    Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL.
    J Comput Chem; 2004 Jan 30; 25(2):265-84. PubMed ID: 14648625
    [Abstract] [Full Text] [Related]

  • 36. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S, Ryde U.
    Proteins; 2012 May 30; 80(5):1326-42. PubMed ID: 22274991
    [Abstract] [Full Text] [Related]

  • 37. Relative complexation energies for Li(+) ion in solution: molecular level solvation versus polarizable continuum model study.
    Eilmes A, Kubisiak P.
    J Phys Chem A; 2010 Jan 21; 114(2):973-9. PubMed ID: 20030307
    [Abstract] [Full Text] [Related]

  • 38. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D, Schaefer P, Cui Q.
    J Phys Chem B; 2005 Sep 22; 109(37):17715-33. PubMed ID: 16853267
    [Abstract] [Full Text] [Related]

  • 39. Protonation of type-1 Cu bound histidines: a quantum chemical study.
    Su P, Li H.
    Inorg Chem; 2010 Jan 18; 49(2):435-44. PubMed ID: 20000723
    [Abstract] [Full Text] [Related]

  • 40. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules.
    Li S, Li W, Fang T.
    J Am Chem Soc; 2005 May 18; 127(19):7215-26. PubMed ID: 15884963
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.