These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
85 related items for PubMed ID: 16978647
1. In vitro evolution of a hyperstable Gbeta1 variant. Wunderlich M, Schmid FX. J Mol Biol; 2006 Oct 20; 363(2):545-57. PubMed ID: 16978647 [Abstract] [Full Text] [Related]
2. Dimer formation of a stabilized Gbeta1 variant: a structural and energetic analysis. Thoms S, Max KE, Wunderlich M, Jacso T, Lilie H, Reif B, Heinemann U, Schmid FX. J Mol Biol; 2009 Sep 04; 391(5):918-32. PubMed ID: 19527728 [Abstract] [Full Text] [Related]
3. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions. Wunderlich M, Martin A, Schmid FX. J Mol Biol; 2005 Apr 15; 347(5):1063-76. PubMed ID: 15784264 [Abstract] [Full Text] [Related]
4. Evolutionary protein stabilization in comparison with computational design. Wunderlich M, Martin A, Staab CA, Schmid FX. J Mol Biol; 2005 Sep 02; 351(5):1160-8. PubMed ID: 16051264 [Abstract] [Full Text] [Related]
5. Increased folding stability of TEM-1 beta-lactamase by in vitro selection. Kather I, Jakob RP, Dobbek H, Schmid FX. J Mol Biol; 2008 Oct 31; 383(1):238-51. PubMed ID: 18706424 [Abstract] [Full Text] [Related]
6. In-vitro selection of highly stabilized protein variants with optimized surface. Martin A, Sieber V, Schmid FX. J Mol Biol; 2001 Jun 08; 309(3):717-26. PubMed ID: 11397091 [Abstract] [Full Text] [Related]
7. A stable disulfide-free gene-3-protein of phage fd generated by in vitro evolution. Kather I, Bippes CA, Schmid FX. J Mol Biol; 2005 Dec 02; 354(3):666-78. PubMed ID: 16259997 [Abstract] [Full Text] [Related]
8. Optimization of the gbeta1 domain by computational design and by in vitro evolution: structural and energetic basis of stabilization. Wunderlich M, Max KE, Roske Y, Mueller U, Heinemann U, Schmid FX. J Mol Biol; 2007 Oct 26; 373(3):775-84. PubMed ID: 17868696 [Abstract] [Full Text] [Related]
9. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability. Max KE, Wunderlich M, Roske Y, Schmid FX, Heinemann U. J Mol Biol; 2007 Jun 15; 369(4):1087-97. PubMed ID: 17481655 [Abstract] [Full Text] [Related]
10. Combined use of experimental and computational screens to characterize protein stability. Barakat NH, Barakat NH, Love JJ. Protein Eng Des Sel; 2010 Oct 15; 23(10):799-807. PubMed ID: 20805093 [Abstract] [Full Text] [Related]
11. Changing the determinants of protein stability from covalent to non-covalent interactions by in vitro evolution: a structural and energetic analysis. Kather I, Jakob R, Dobbek H, Schmid FX. J Mol Biol; 2008 Sep 12; 381(4):1040-54. PubMed ID: 18621056 [Abstract] [Full Text] [Related]
12. Remarkable stabilization of a psychrotrophic RNase HI by a combination of thermostabilizing mutations identified by the suppressor mutation method. Tadokoro T, Matsushita K, Abe Y, Rohman MS, Koga Y, Takano K, Kanaya S. Biochemistry; 2008 Aug 05; 47(31):8040-7. PubMed ID: 18616283 [Abstract] [Full Text] [Related]
13. A kinetic approach to determining the conformational stability of a protein that dimerizes after folding. Hoffmann-Thoms S, Schmid FX. Biochemistry; 2012 May 08; 51(18):3948-56. PubMed ID: 22509974 [Abstract] [Full Text] [Related]
14. Exploiting elements of transcriptional machinery to enhance protein stability. Barakat NH, Barakat NH, Carmody LJ, Love JJ. J Mol Biol; 2007 Feb 09; 366(1):103-16. PubMed ID: 17157872 [Abstract] [Full Text] [Related]
15. Construction of stabilized proteins by combinatorial consensus mutagenesis. Amin N, Liu AD, Ramer S, Aehle W, Meijer D, Metin M, Wong S, Gualfetti P, Schellenberger V. Protein Eng Des Sel; 2004 Nov 09; 17(11):787-93. PubMed ID: 15574484 [Abstract] [Full Text] [Related]
16. NMR-detected conformational exchange observed in a computationally designed variant of protein Gbeta1. Crowhurst KA, Mayo SL. Protein Eng Des Sel; 2008 Sep 09; 21(9):577-87. PubMed ID: 18586670 [Abstract] [Full Text] [Related]
17. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. Acharya P, Rajakumara E, Sankaranarayanan R, Rao NM. J Mol Biol; 2004 Aug 27; 341(5):1271-81. PubMed ID: 15321721 [Abstract] [Full Text] [Related]
18. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state. Wallgren M, Adén J, Pylypenko O, Mikaelsson T, Johansson LB, Rak A, Wolf-Watz M. J Mol Biol; 2008 Jun 13; 379(4):845-58. PubMed ID: 18471828 [Abstract] [Full Text] [Related]
19. Thermostable variants of subtilisin selected by temperature-gradient gel electrophoresis. Sättler A, Kanka S, Maurer KH, Riesner D. Electrophoresis; 1996 Apr 13; 17(4):784-92. PubMed ID: 8738345 [Abstract] [Full Text] [Related]
20. Evolutionary stabilization of the gene-3-protein of phage fd reveals the principles that govern the thermodynamic stability of two-domain proteins. Martin A, Schmid FX. J Mol Biol; 2003 May 09; 328(4):863-75. PubMed ID: 12729760 [Abstract] [Full Text] [Related] Page: [Next] [New Search]