These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


321 related items for PubMed ID: 16978827

  • 21. Absorption and metabolism of bioactive molecules after oral consumption of cooked edible heads of Cynara scolymus L. (cultivar Violetto di Provenza) in human subjects: a pilot study.
    Azzini E, Bugianesi R, Romano F, Di Venere D, Miccadei S, Durazzo A, Foddai MS, Catasta G, Linsalata V, Maiani G.
    Br J Nutr; 2007 May; 97(5):963-9. PubMed ID: 17408528
    [Abstract] [Full Text] [Related]

  • 22. In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis.
    Celli N, Dragani LK, Murzilli S, Pagliani T, Poggi A.
    J Agric Food Chem; 2007 May 02; 55(9):3398-407. PubMed ID: 17394337
    [Abstract] [Full Text] [Related]

  • 23. In vitro transformation of chlorogenic acid by human gut microbiota.
    Tomas-Barberan F, García-Villalba R, Quartieri A, Raimondi S, Amaretti A, Leonardi A, Rossi M.
    Mol Nutr Food Res; 2014 May 02; 58(5):1122-31. PubMed ID: 24550206
    [Abstract] [Full Text] [Related]

  • 24. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth.
    Mills CE, Tzounis X, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JP.
    Br J Nutr; 2015 Apr 28; 113(8):1220-7. PubMed ID: 25809126
    [Abstract] [Full Text] [Related]

  • 25. In vitro catabolism of 3',4'-dihydroxycinnamic acid by human colonic microbiota.
    Hasyima Omar M, González Barrio R, Pereira-Caro G, Almutairi TM, Crozier A.
    Int J Food Sci Nutr; 2021 Jun 28; 72(4):511-517. PubMed ID: 33238790
    [Abstract] [Full Text] [Related]

  • 26. In vitro fermentation of a red wine extract by human gut microbiota: changes in microbial groups and formation of phenolic metabolites.
    Sánchez-Patán F, Cueva C, Monagas M, Walton GE, Gibson GR, Quintanilla-López JE, Lebrón-Aguilar R, Martín-Álvarez PJ, Moreno-Arribas MV, Bartolomé B.
    J Agric Food Chem; 2012 Mar 07; 60(9):2136-47. PubMed ID: 22313337
    [Abstract] [Full Text] [Related]

  • 27. Mechanism of inhibition of rice bran lipase by polyphenols: a case study with chlorogenic acid and caffeic acid.
    Raghavendra MP, Kumar PR, Prakash V.
    J Food Sci; 2007 Oct 07; 72(8):E412-9. PubMed ID: 17995599
    [Abstract] [Full Text] [Related]

  • 28. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption.
    Stalmach A, Mullen W, Barron D, Uchida K, Yokota T, Cavin C, Steiling H, Williamson G, Crozier A.
    Drug Metab Dispos; 2009 Aug 07; 37(8):1749-58. PubMed ID: 19460943
    [Abstract] [Full Text] [Related]

  • 29. Chlorogenic acid and caffeic acid are absorbed in humans.
    Olthof MR, Hollman PC, Katan MB.
    J Nutr; 2001 Jan 07; 131(1):66-71. PubMed ID: 11208940
    [Abstract] [Full Text] [Related]

  • 30. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro.
    Wang GF, Shi LP, Ren YD, Liu QF, Liu HF, Zhang RJ, Li Z, Zhu FH, He PL, Tang W, Tao PZ, Li C, Zhao WM, Zuo JP.
    Antiviral Res; 2009 Aug 07; 83(2):186-90. PubMed ID: 19463857
    [Abstract] [Full Text] [Related]

  • 31. Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro.
    Bazzocco S, Mattila I, Guyot S, Renard CM, Aura AM.
    Eur J Nutr; 2008 Dec 07; 47(8):442-52. PubMed ID: 18931964
    [Abstract] [Full Text] [Related]

  • 32. Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: small intestine and colon are key sites for coffee metabolism.
    Renouf M, Guy PA, Marmet C, Fraering AL, Longet K, Moulin J, Enslen M, Barron D, Dionisi F, Cavin C, Williamson G, Steiling H.
    Mol Nutr Food Res; 2010 Jun 07; 54(6):760-6. PubMed ID: 19937852
    [Abstract] [Full Text] [Related]

  • 33. Absorption of chlorogenic acid and caffeic acid in rats after oral administration.
    Azuma K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J.
    J Agric Food Chem; 2000 Nov 07; 48(11):5496-500. PubMed ID: 11087508
    [Abstract] [Full Text] [Related]

  • 34. Effects of chlorogenic acid and its metabolites on the sleep-wakefulness cycle in rats.
    Shinomiya K, Omichi J, Ohnishi R, Ito H, Yoshida T, Kamei C.
    Eur J Pharmacol; 2004 Nov 19; 504(3):185-9. PubMed ID: 15541420
    [Abstract] [Full Text] [Related]

  • 35. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins.
    Gugliucci A, Bastos DH, Schulze J, Souza MF.
    Fitoterapia; 2009 Sep 19; 80(6):339-44. PubMed ID: 19409454
    [Abstract] [Full Text] [Related]

  • 36. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria.
    dos Santos MD, Martins PR, dos Santos PA, Bortocan R, Iamamoto Y, Lopes NP.
    Eur J Pharm Sci; 2005 Sep 19; 26(1):62-70. PubMed ID: 16019193
    [Abstract] [Full Text] [Related]

  • 37. Caffeic acid derivatives in the roots of yacon (Smallanthus sonchifolius).
    Takenaka M, Yan X, Ono H, Yoshida M, Nagata T, Nakanishi T.
    J Agric Food Chem; 2003 Jan 29; 51(3):793-6. PubMed ID: 12537459
    [Abstract] [Full Text] [Related]

  • 38. Biotransformation and improved enzymatic extraction of chlorogenic acid from coffee pulp by filamentous fungi.
    Torres-Mancera MT, Baqueiro-Peña I, Figueroa-Montero A, Rodríguez-Serrano G, González-Zamora E, Favela-Torres E, Saucedo-Castañeda G.
    Biotechnol Prog; 2013 Jan 29; 29(2):337-45. PubMed ID: 23341203
    [Abstract] [Full Text] [Related]

  • 39. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota.
    Parkar SG, Trower TM, Stevenson DE.
    Anaerobe; 2013 Oct 29; 23():12-9. PubMed ID: 23916722
    [Abstract] [Full Text] [Related]

  • 40. Lipid-phenolic radical adducts as a plausible mechanism of "plant ageing" pigment formation.
    Merzlyak MN, Kovrizhnih VA.
    Gen Physiol Biophys; 1984 Dec 29; 3(6):497-505. PubMed ID: 6530137
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.