These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


323 related items for PubMed ID: 16981715

  • 1. Mechanism of the highly efficient quenching of tryptophan fluorescence in human gammaD-crystallin.
    Chen J, Flaugh SL, Callis PR, King J.
    Biochemistry; 2006 Sep 26; 45(38):11552-63. PubMed ID: 16981715
    [Abstract] [Full Text] [Related]

  • 2. Mechanism of the efficient tryptophan fluorescence quenching in human gammaD-crystallin studied by time-resolved fluorescence.
    Chen J, Toptygin D, Brand L, King J.
    Biochemistry; 2008 Oct 07; 47(40):10705-21. PubMed ID: 18795792
    [Abstract] [Full Text] [Related]

  • 3. Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins.
    Kosinski-Collins MS, Flaugh SL, King J.
    Protein Sci; 2004 Aug 07; 13(8):2223-35. PubMed ID: 15273315
    [Abstract] [Full Text] [Related]

  • 4. Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability.
    Flaugh SL, Kosinski-Collins MS, King J.
    Protein Sci; 2005 Aug 07; 14(8):2030-43. PubMed ID: 16046626
    [Abstract] [Full Text] [Related]

  • 5. Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage.
    Chen J, Callis PR, King J.
    Biochemistry; 2009 May 05; 48(17):3708-16. PubMed ID: 19358562
    [Abstract] [Full Text] [Related]

  • 6. Group II archaeal chaperonin recognition of partially folded human γD-crystallin mutants.
    Sergeeva OA, Yang J, King JA, Knee KM.
    Protein Sci; 2014 Jun 05; 23(6):693-702. PubMed ID: 24615724
    [Abstract] [Full Text] [Related]

  • 7. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
    Yuan T, Weljie AM, Vogel HJ.
    Biochemistry; 1998 Mar 03; 37(9):3187-95. PubMed ID: 9485473
    [Abstract] [Full Text] [Related]

  • 8. Photophysics of tryptophan fluorescence: link with the catalytic strategy of the citrate synthase from Thermoplasma acidophilum.
    Kurz LC, Fite B, Jean J, Park J, Erpelding T, Callis P.
    Biochemistry; 2005 Feb 08; 44(5):1394-413. PubMed ID: 15683225
    [Abstract] [Full Text] [Related]

  • 9. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system.
    Dijkstra DS, Broos J, Lolkema JS, Enequist H, Minke W, Robillard GT.
    Biochemistry; 1996 May 28; 35(21):6628-34. PubMed ID: 8639611
    [Abstract] [Full Text] [Related]

  • 10. Tryptophan cluster protects human γD-crystallin from ultraviolet radiation-induced photoaggregation in vitro.
    Schafheimer N, King J.
    Photochem Photobiol; 2013 May 28; 89(5):1106-15. PubMed ID: 23683003
    [Abstract] [Full Text] [Related]

  • 11. Solvent effects on the fluorescence quenching of tryptophan by amides via electron transfer. Experimental and computational studies.
    Muiño PL, Callis PR.
    J Phys Chem B; 2009 Mar 05; 113(9):2572-7. PubMed ID: 18672928
    [Abstract] [Full Text] [Related]

  • 12. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies.
    Pasta SY, Raman B, Ramakrishna T, Rao ChM.
    Mol Vis; 2004 Sep 08; 10():655-62. PubMed ID: 15448619
    [Abstract] [Full Text] [Related]

  • 13. Femtosecond fluorescence spectra of tryptophan in human gamma-crystallin mutants: site-dependent ultrafast quenching.
    Xu J, Chen J, Toptygin D, Tcherkasskaya O, Callis P, King J, Brand L, Knutson JR.
    J Am Chem Soc; 2009 Nov 25; 131(46):16751-7. PubMed ID: 19919143
    [Abstract] [Full Text] [Related]

  • 14. In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation.
    Kosinski-Collins MS, King J.
    Protein Sci; 2003 Mar 25; 12(3):480-90. PubMed ID: 12592018
    [Abstract] [Full Text] [Related]

  • 15. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR, Steer BA, Prentice GA, Weller MJ, Szabo AG.
    Biochemistry; 1997 Jun 10; 36(23):6874-84. PubMed ID: 9188682
    [Abstract] [Full Text] [Related]

  • 16. Characterization of the structure of the phosphoprotein of Chandipura virus, a negative stranded RNA virus probing intratryptophan energy transfer using single and double tryptophan mutants.
    Mukhopadhyay S, Maity SS, Roy A, Chattopadhyay D, Ghosh KS, Dasgupta S, Ghosh S.
    Biochimie; 2010 Feb 10; 92(2):136-46. PubMed ID: 19895867
    [Abstract] [Full Text] [Related]

  • 17. Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate.
    Goulet DR, Knee KM, King JA.
    Exp Eye Res; 2011 Oct 10; 93(4):371-81. PubMed ID: 21600897
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.