These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


214 related items for PubMed ID: 16982612

  • 1. Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation.
    He XZ, Wang X, Dixon RA.
    J Biol Chem; 2006 Nov 10; 281(45):34441-7. PubMed ID: 16982612
    [Abstract] [Full Text] [Related]

  • 2. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula.
    Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X.
    Plant Cell; 2005 Nov 10; 17(11):3141-54. PubMed ID: 16214900
    [Abstract] [Full Text] [Related]

  • 3. Single amino acid mutations of Medicago glycosyltransferase UGT85H2 enhance activity and impart reversibility.
    Modolo LV, Escamilla-Treviño LL, Dixon RA, Wang X.
    FEBS Lett; 2009 Jun 18; 583(12):2131-5. PubMed ID: 19500551
    [Abstract] [Full Text] [Related]

  • 4. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids.
    Modolo LV, Li L, Pan H, Blount JW, Dixon RA, Wang X.
    J Mol Biol; 2009 Oct 09; 392(5):1292-302. PubMed ID: 19683002
    [Abstract] [Full Text] [Related]

  • 5. Crystal structure of Medicago truncatula UGT85H2--insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase.
    Li L, Modolo LV, Escamilla-Trevino LL, Achnine L, Dixon RA, Wang X.
    J Mol Biol; 2007 Jul 27; 370(5):951-63. PubMed ID: 17553523
    [Abstract] [Full Text] [Related]

  • 6. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula.
    Achnine L, Huhman DV, Farag MA, Sumner LW, Blount JW, Dixon RA.
    Plant J; 2005 Mar 27; 41(6):875-87. PubMed ID: 15743451
    [Abstract] [Full Text] [Related]

  • 7. Engineering flavonoid glycosyltransferases for enhanced catalytic efficiency and extended sugar-donor selectivity.
    Kim HS, Kim BG, Sung S, Kim M, Mok H, Chong Y, Ahn JH.
    Planta; 2013 Oct 27; 238(4):683-93. PubMed ID: 23801300
    [Abstract] [Full Text] [Related]

  • 8. Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus.
    Chiu HH, Hsieh YC, Chen YH, Wang HY, Lu CY, Chen CJ, Li YK.
    Appl Microbiol Biotechnol; 2016 Oct 27; 100(19):8411-24. PubMed ID: 27198725
    [Abstract] [Full Text] [Related]

  • 9. Regioselective synthesis of plant (iso)flavone glycosides in Escherichia coli.
    He XZ, Li WS, Blount JW, Dixon RA.
    Appl Microbiol Biotechnol; 2008 Aug 27; 80(2):253-60. PubMed ID: 18568307
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana.
    Jones P, Messner B, Nakajima J, Schäffner AR, Saito K.
    J Biol Chem; 2003 Nov 07; 278(45):43910-8. PubMed ID: 12900416
    [Abstract] [Full Text] [Related]

  • 14. Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses.
    Osmani SA, Bak S, Imberty A, Olsen CE, Møller BL.
    Plant Physiol; 2008 Nov 07; 148(3):1295-308. PubMed ID: 18829982
    [Abstract] [Full Text] [Related]

  • 15. Expression, characterization, and site-directed mutagenesis of UDP-glycosyltransferase UGT88A1 from Arabidopsis thaliana.
    Weng J, Chen L, Cheng Y, Li Y, Jia H, Zhou H, Wei P.
    Bioengineered; 2019 Dec 07; 10(1):142-149. PubMed ID: 31070087
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Functional Characterization and Structural Basis of an Efficient Di-C-glycosyltransferase from Glycyrrhiza glabra.
    Zhang M, Li FD, Li K, Wang ZL, Wang YX, He JB, Su HF, Zhang ZY, Chi CB, Shi XM, Yun CH, Zhang ZY, Liu ZM, Zhang LR, Yang DH, Ma M, Qiao X, Ye M.
    J Am Chem Soc; 2020 Feb 19; 142(7):3506-3512. PubMed ID: 31986016
    [Abstract] [Full Text] [Related]

  • 18. Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses.
    Thorsøe KS, Bak S, Olsen CE, Imberty A, Breton C, Lindberg Møller B.
    Plant Physiol; 2005 Oct 19; 139(2):664-73. PubMed ID: 16169969
    [Abstract] [Full Text] [Related]

  • 19. A UDP-glucose:isoflavone 7-O-glucosyltransferase from the roots of soybean (glycine max) seedlings. Purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis.
    Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T, Takahashi S, Nakayama T.
    J Biol Chem; 2007 Aug 10; 282(32):23581-90. PubMed ID: 17565994
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.