These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 16984140

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Surface characterization of poly(ethylene glycol) coated human red blood cells by particle electrophoresis.
    Neu B, Armstrong JK, Fisher TC, Meiselman HJ.
    Biorheology; 2003; 40(4):477-87. PubMed ID: 12775912
    [Abstract] [Full Text] [Related]

  • 4. Electrophoretic mobility of human red blood cells coated with poly(ethylene glycol).
    Neu B, Armstrong JK, Fisher TC, Bäumler H, Meiselman HJ.
    Biorheology; 2001; 38(5-6):389-403. PubMed ID: 12016322
    [Abstract] [Full Text] [Related]

  • 5. Decreased immunorejection in unmatched blood transfusions by attachment of methoxypolyethylene glycol on human red blood cells and the effect on D antigen.
    Tan Y, Qiu Y, Xu H, Ji S, Li S, Gong F, Zhang Y.
    Transfusion; 2006 Dec; 46(12):2122-7. PubMed ID: 17176324
    [Abstract] [Full Text] [Related]

  • 6. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.
    Chapanian R, Constantinescu I, Rossi NA, Medvedev N, Brooks DE, Scott MD, Kizhakkedathu JN.
    Biomaterials; 2012 Nov; 33(31):7871-83. PubMed ID: 22840223
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Studies on the aggregation behaviour of pegylated human red blood cells with the Zeta sedimentation technique.
    Jovtchev S, Stoeff S, Arnold K, Zschörnig O.
    Clin Hemorheol Microcirc; 2008 Nov; 39(1-4):229-33. PubMed ID: 18503130
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Thiolation mediated pegylation platform to generate functional universal red blood cells.
    Nacharaju P, Manjula BN, Acharya SA.
    Artif Cells Blood Substit Immobil Biotechnol; 2007 Nov; 35(1):107-18. PubMed ID: 17364475
    [Abstract] [Full Text] [Related]

  • 11. Modulating the red cell membrane to produce universal/stealth donor red cells suitable for transfusion.
    Garratty G.
    Vox Sang; 2008 Feb; 94(2):87-95. PubMed ID: 18034787
    [Abstract] [Full Text] [Related]

  • 12. Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: size does matter.
    Bradley AJ, Murad KL, Regan KL, Scott MD.
    Biochim Biophys Acta; 2002 Apr 12; 1561(2):147-58. PubMed ID: 11997115
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S, Poulin S, Hildgen P.
    J Biomed Mater Res A; 2008 Dec 15; 87(4):885-95. PubMed ID: 18228249
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Adsorption of amphiphilic hyperbranched polyglycerol derivatives onto human red blood cells.
    Liu Z, Janzen J, Brooks DE.
    Biomaterials; 2010 Apr 15; 31(12):3364-73. PubMed ID: 20122720
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Casual cell surface remodeling using biocompatible lipid-poly(ethylene glycol)(n): development of stealth cells and monitoring of cell membrane behavior in serum-supplemented conditions.
    Chung HA, Kato K, Itoh C, Ohhashi S, Nagamune T.
    J Biomed Mater Res A; 2004 Aug 01; 70(2):179-85. PubMed ID: 15227662
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.