These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


263 related items for PubMed ID: 16986886

  • 1. Vibrational spectral diffusion of azide in water.
    Li S, Schmidt JR, Piryatinski A, Lawrence CP, Skinner JL.
    J Phys Chem B; 2006 Sep 28; 110(38):18933-8. PubMed ID: 16986886
    [Abstract] [Full Text] [Related]

  • 2. Vibrational energy relaxation of azide in water.
    Li S, Schmidt JR, Skinner JL.
    J Chem Phys; 2006 Dec 28; 125(24):244507. PubMed ID: 17199355
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in two-dimensional IR line shapes.
    Loparo JJ, Roberts ST, Tokmakoff A.
    J Chem Phys; 2006 Nov 21; 125(19):194521. PubMed ID: 17129137
    [Abstract] [Full Text] [Related]

  • 7. Vibrational spectroscopy and dynamics of azide ion in ionic liquid and dimethyl sulfoxide water mixtures.
    Sando GM, Dahl K, Owrutsky JC.
    J Phys Chem B; 2007 May 10; 111(18):4901-9. PubMed ID: 17388412
    [Abstract] [Full Text] [Related]

  • 8. Vibrational spectral diffusion in supercritical D2O from first principles: an interplay between the dynamics of hydrogen bonds, dangling OD groups, and inertial rotation.
    Mallik BS, Chandra A.
    J Phys Chem A; 2008 Dec 25; 112(51):13518-27. PubMed ID: 19093822
    [Abstract] [Full Text] [Related]

  • 9. Correlation of the vibrations of the aqueous azide ion with the O-H modes of bound water molecules.
    Kuo CH, Vorobyev DY, Chen J, Hochstrasser RM.
    J Phys Chem B; 2007 Dec 20; 111(50):14028-33. PubMed ID: 18044873
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Dynamics of water at the interface in reverse micelles: measurements of spectral diffusion with two-dimensional infrared vibrational echoes.
    Fenn EE, Wong DB, Giammanco CH, Fayer MD.
    J Phys Chem B; 2011 Oct 13; 115(40):11658-70. PubMed ID: 21899355
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Approaches for the calculation of vibrational frequencies in liquids: comparison to benchmarks for azide/water clusters.
    Li S, Schmidt JR, Corcelli SA, Lawrence CP, Skinner JL.
    J Chem Phys; 2006 May 28; 124(20):204110. PubMed ID: 16774322
    [Abstract] [Full Text] [Related]

  • 14. Dynamics of nanoscopic water: vibrational echo and infrared pump-probe studies of reverse micelles.
    Piletic IR, Tan HS, Fayer MD.
    J Phys Chem B; 2005 Nov 17; 109(45):21273-84. PubMed ID: 16853758
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Signatures of coherent vibrational energy transfer in IR and Raman line shapes for liquid water.
    Yang M, Skinner JL.
    Phys Chem Chem Phys; 2010 Jan 28; 12(4):982-91. PubMed ID: 20066383
    [Abstract] [Full Text] [Related]

  • 17. Pronounced non-Condon effects in the ultrafast infrared spectroscopy of water.
    Schmidt JR, Corcelli SA, Skinner JL.
    J Chem Phys; 2005 Jul 22; 123(4):044513. PubMed ID: 16095375
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.