These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
206 related items for PubMed ID: 1700420
21. Residues flanking the COOH-terminal C-region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase and the extent of coupling of its co-translational translocation and proteolytic processing in vitro. Nothwehr SF, Hoeltzli SD, Allen KL, Lively MO, Gordon JI. J Biol Chem; 1990 Dec 15; 265(35):21797-803. PubMed ID: 2123875 [Abstract] [Full Text] [Related]
22. Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme. Micanovic R, Bailey CA, Brink L, Gerber L, Pan YC, Hulmes JD, Udenfriend S. Proc Natl Acad Sci U S A; 1988 Mar 15; 85(5):1398-402. PubMed ID: 3422741 [Abstract] [Full Text] [Related]
24. Cleavage without anchor addition accompanies the processing of a nascent protein to its glycosylphosphatidylinositol-anchored form. Maxwell SE, Ramalingam S, Gerber LD, Udenfriend S. Proc Natl Acad Sci U S A; 1995 Feb 28; 92(5):1550-4. PubMed ID: 7878018 [Abstract] [Full Text] [Related]
25. An internally positioned signal can direct attachment of a glycophospholipid membrane anchor. Caras IW. J Cell Biol; 1991 Apr 28; 113(1):77-85. PubMed ID: 1706725 [Abstract] [Full Text] [Related]
26. Structural and functional analysis of human germ cell alkaline phosphatase by site-specific mutagenesis. Watanabe T, Wada N, Chou JY. Biochemistry; 1992 Mar 31; 31(12):3051-8. PubMed ID: 1554693 [Abstract] [Full Text] [Related]
27. Two rat intestinal alkaline phosphatase isoforms with different carboxyl-terminal peptides are both membrane-bound by a glycan phosphatidylinositol linkage. Engle MJ, Mahmood A, Alpers DH. J Biol Chem; 1995 May 19; 270(20):11935-40. PubMed ID: 7744844 [Abstract] [Full Text] [Related]
28. Parallel effects of signal peptide hydrophobic core modifications on co-translational translocation and post-translational cleavage by purified signal peptidase. Cioffi JA, Allen KL, Lively MO, Kemper B. J Biol Chem; 1989 Sep 05; 264(25):15052-8. PubMed ID: 2549048 [Abstract] [Full Text] [Related]
29. Site-directed mutagenesis and epitope-mapped monoclonal antibodies define a catalytically important conformational difference between human placental and germ cell alkaline phosphatase. Hoylaerts MF, Millán JL. Eur J Biochem; 1991 Dec 05; 202(2):605-16. PubMed ID: 1722150 [Abstract] [Full Text] [Related]
30. Isolation and characterization of a Chinese hamster ovary (CHO) mutant defective in the second step of glycosylphosphatidylinositol biosynthesis. Stevens VL, Zhang H, Harreman M. Biochem J; 1996 Jan 01; 313 ( Pt 1)(Pt 1):253-8. PubMed ID: 8546692 [Abstract] [Full Text] [Related]
31. Mammalian signal peptidase: partial purification and general characterization of the signal peptidase from microsomal membranes of porcine pancreas. Fujimoto Y, Watanabe Y, Uchida M, Ozaki M. J Biochem; 1984 Oct 01; 96(4):1125-31. PubMed ID: 6084004 [Abstract] [Full Text] [Related]
32. Carcinoembryonic antigen is anchored to membranes by covalent attachment to a glycosylphosphatidylinositol moiety: identification of the ethanolamine linkage site. Hefta SA, Hefta LJ, Lee TD, Paxton RJ, Shively JE. Proc Natl Acad Sci U S A; 1988 Jul 01; 85(13):4648-52. PubMed ID: 3387431 [Abstract] [Full Text] [Related]
33. COOH-terminal processing of nascent polypeptides by the glycosylphosphatidylinositol transamidase in the presence of hydrazine is governed by the same parameters as glycosylphosphatidylinositol addition. Ramalingam S, Maxwell SE, Medof ME, Chen R, Gerber LD, Udenfriend S. Proc Natl Acad Sci U S A; 1996 Jul 23; 93(15):7528-33. PubMed ID: 8755508 [Abstract] [Full Text] [Related]
34. Molecular signals for phosphatidylinositol modification of the Qa-2 antigen. Ulker N, Hood LE, Stroynowski I. J Immunol; 1990 Oct 01; 145(7):2214-9. PubMed ID: 2398278 [Abstract] [Full Text] [Related]
35. A heat-stable alkaline phosphatase from Penaeus japonicus Bate (Crustacea: Decapoda): a phosphatidylinositol-glycan anchored membrane protein. Chuang NN. Comp Biochem Physiol B; 1990 Oct 01; 95(1):165-9. PubMed ID: 2331871 [Abstract] [Full Text] [Related]
36. A novel strategy for secreting proteins: use of phosphatidylinositol-glycan-specific phospholipase D to release chimeric phosphatidylinositol-glycan anchored proteins. Scallon BJ, Kado-Fong H, Nettleton MY, Kochan JP. Biotechnology (N Y); 1992 May 01; 10(5):550-6. PubMed ID: 1368234 [Abstract] [Full Text] [Related]
37. How glycosylphosphatidylinositol-anchored membrane proteins are made. Udenfriend S, Kodukula K. Annu Rev Biochem; 1995 May 01; 64():563-91. PubMed ID: 7574493 [Abstract] [Full Text] [Related]
38. Placental alkaline phosphatase integrates via its carboxy-terminus into the microvillous membrane: its allotypes differ in conformation. Abu-Hasan NS, Sutcliffe RG. Placenta; 1985 May 01; 6(5):391-404. PubMed ID: 3906624 [Abstract] [Full Text] [Related]
39. Signal and membrane anchor functions overlap in the type II membrane protein I gamma CAT. Lipp J, Dobberstein B. J Cell Biol; 1988 Jun 01; 106(6):1813-20. PubMed ID: 3290220 [Abstract] [Full Text] [Related]
40. Export of a misprocessed GPI-anchored protein from the endoplasmic reticulum in vitro in an ATP- and cytosol-dependent manner. Ali BR, Claxton S, Field MC. FEBS Lett; 2000 Oct 13; 483(1):32-6. PubMed ID: 11033351 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]