These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


313 related items for PubMed ID: 17005618

  • 21. Developmental origin and identity of song system neurons born during vocal learning in songbirds.
    Scott BB, Lois C.
    J Comp Neurol; 2007 May 10; 502(2):202-14. PubMed ID: 17348018
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Daily and developmental modulation of "premotor" activity in the birdsong system.
    Day NF, Kinnischtzke AK, Adam M, Nick TA.
    Dev Neurobiol; 2009 Oct 10; 69(12):796-810. PubMed ID: 19650042
    [Abstract] [Full Text] [Related]

  • 27. Song decrystallization in adult zebra finches does not require the song nucleus NIf.
    Roy A, Mooney R.
    J Neurophysiol; 2009 Aug 10; 102(2):979-91. PubMed ID: 19515953
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Recurrent interactions between the input and output of a songbird cortico-basal ganglia pathway are implicated in vocal sequence variability.
    Hamaguchi K, Mooney R.
    J Neurosci; 2012 Aug 22; 32(34):11671-87. PubMed ID: 22915110
    [Abstract] [Full Text] [Related]

  • 30. Neuroestrogen signaling in the songbird auditory cortex propagates into a sensorimotor network via an 'interface' nucleus.
    Pawlisch BA, Remage-Healey L.
    Neuroscience; 2015 Jan 22; 284():522-535. PubMed ID: 25453773
    [Abstract] [Full Text] [Related]

  • 31. Electrophysiological characterization and computational models of HVC neurons in the zebra finch.
    Daou A, Ross MT, Johnson F, Hyson RL, Bertram R.
    J Neurophysiol; 2013 Sep 22; 110(5):1227-45. PubMed ID: 23719205
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Neurons in a forebrain nucleus required for vocal plasticity rapidly switch between precise firing and variable bursting depending on social context.
    Kao MH, Wright BD, Doupe AJ.
    J Neurosci; 2008 Dec 03; 28(49):13232-47. PubMed ID: 19052215
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Functional evidence for internal feedback in the songbird brain nucleus HVC.
    Seki Y, Okanoya K.
    Neuroreport; 2008 Apr 16; 19(6):679-82. PubMed ID: 18382286
    [Abstract] [Full Text] [Related]

  • 38. Physiological identification of cortico-striatal projection neurons for song control in Bengalese finches.
    Hessler NA, Okanoya K.
    Behav Brain Res; 2018 Sep 03; 349():37-41. PubMed ID: 29709609
    [Abstract] [Full Text] [Related]

  • 39. Telencephalic neurons monosynaptically link brainstem and forebrain premotor networks necessary for song.
    Roberts TF, Klein ME, Kubke MF, Wild JM, Mooney R.
    J Neurosci; 2008 Mar 26; 28(13):3479-89. PubMed ID: 18367614
    [Abstract] [Full Text] [Related]

  • 40. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.
    Lewandowski B, Vyssotski A, Hahnloser RH, Schmidt M.
    J Physiol Paris; 2013 Jun 26; 107(3):178-92. PubMed ID: 23603062
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.