These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
682 related items for PubMed ID: 17005923
1. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne. Ciannamea S, Kaufmann K, Frau M, Tonaco IA, Petersen K, Nielsen KK, Angenent GC, Immink RG. J Exp Bot; 2006; 57(13):3419-31. PubMed ID: 17005923 [Abstract] [Full Text] [Related]
2. TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Kane NA, Agharbaoui Z, Diallo AO, Adam H, Tominaga Y, Ouellet F, Sarhan F. Plant J; 2007 Aug; 51(4):670-80. PubMed ID: 17587304 [Abstract] [Full Text] [Related]
3. Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development. Adam H, Ouellet F, Kane NA, Agharbaoui Z, Major G, Tominaga Y, Sarhan F. Plant Cell Physiol; 2007 Aug; 48(8):1192-206. PubMed ID: 17623742 [Abstract] [Full Text] [Related]
4. Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach. Ciannamea S, Busscher-Lange J, de Folter S, Angenent GC, Immink RG. Plant Cell Physiol; 2006 Apr; 47(4):481-92. PubMed ID: 16449231 [Abstract] [Full Text] [Related]
5. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Masiero S, Li MA, Will I, Hartmann U, Saedler H, Huijser P, Schwarz-Sommer Z, Sommer H. Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492 [Abstract] [Full Text] [Related]
6. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H. Development; 2008 Apr; 135(8):1481-91. PubMed ID: 18339670 [Abstract] [Full Text] [Related]
7. Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Jang S, Torti S, Coupland G. Plant J; 2009 Nov; 60(4):614-25. PubMed ID: 19656342 [Abstract] [Full Text] [Related]
8. Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development. Cseke LJ, Ravinder N, Pandey AK, Podila GK. Gene; 2007 Apr 15; 391(1-2):209-22. PubMed ID: 17331677 [Abstract] [Full Text] [Related]
9. APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Sridhar VV, Surendrarao A, Liu Z. Development; 2006 Aug 15; 133(16):3159-66. PubMed ID: 16854969 [Abstract] [Full Text] [Related]
10. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Chang YY, Chiu YF, Wu JW, Yang CH. Plant Cell Physiol; 2009 Aug 15; 50(8):1425-38. PubMed ID: 19541596 [Abstract] [Full Text] [Related]
11. The CArG-box located upstream from the transcriptional start of wheat vernalization gene VRN1 is not necessary for the vernalization response. Pidal B, Yan L, Fu D, Zhang F, Tranquilli G, Dubcovsky J. J Hered; 2009 Aug 15; 100(3):355-64. PubMed ID: 19251764 [Abstract] [Full Text] [Related]
12. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Chen MK, Lin IC, Yang CH. Plant Cell Physiol; 2008 May 15; 49(5):704-17. PubMed ID: 18367516 [Abstract] [Full Text] [Related]
13. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH. Plant Cell Physiol; 2010 Jun 15; 51(6):1029-45. PubMed ID: 20395287 [Abstract] [Full Text] [Related]
14. Regulation and function of SOC1, a flowering pathway integrator. Lee J, Lee I. J Exp Bot; 2010 May 15; 61(9):2247-54. PubMed ID: 20413527 [Abstract] [Full Text] [Related]
15. MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth. Petersen K, Didion T, Andersen CH, Nielsen KK. J Plant Physiol; 2004 Apr 15; 161(4):439-47. PubMed ID: 15128031 [Abstract] [Full Text] [Related]
16. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Liu C, Zhang J, Zhang N, Shan H, Su K, Zhang J, Meng Z, Kong H, Chen Z. Mol Biol Evol; 2010 Jul 15; 27(7):1598-611. PubMed ID: 20147438 [Abstract] [Full Text] [Related]
17. PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-domain protein MPF2 from Physalis floridana. He C, Sommer H, Grosardt B, Huijser P, Saedler H. Mol Biol Evol; 2007 May 15; 24(5):1229-41. PubMed ID: 17339635 [Abstract] [Full Text] [Related]
18. MIKC* MADS-box proteins: conserved regulators of the gametophytic generation of land plants. Zobell O, Faigl W, Saedler H, Münster T. Mol Biol Evol; 2010 May 15; 27(5):1201-11. PubMed ID: 20080864 [Abstract] [Full Text] [Related]
19. Gene activation cascade triggered by a single photoperiodic cycle inducing flowering in Sinapis alba. D'Aloia M, Tamseddak K, Bonhomme D, Bonhomme F, Bernier G, Périlleux C. Plant J; 2009 Sep 15; 59(6):962-73. PubMed ID: 19473326 [Abstract] [Full Text] [Related]
20. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Kaufmann K, Melzer R, Theissen G. Gene; 2005 Mar 14; 347(2):183-98. PubMed ID: 15777618 [Abstract] [Full Text] [Related] Page: [Next] [New Search]