These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
682 related items for PubMed ID: 17005923
41. MADS-box transcription factors adopt alternative mechanisms for bending DNA. West AG, Sharrocks AD. J Mol Biol; 1999 Mar 12; 286(5):1311-23. PubMed ID: 10064699 [Abstract] [Full Text] [Related]
42. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C. Science; 2002 Jul 12; 297(5579):243-6. PubMed ID: 12114624 [Abstract] [Full Text] [Related]
43. Functional analyses of genetic pathways controlling petal specification in poppy. Drea S, Hileman LC, de Martino G, Irish VF. Development; 2007 Dec 12; 134(23):4157-66. PubMed ID: 17959716 [Abstract] [Full Text] [Related]
44. Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Shan H, Zhang N, Liu C, Xu G, Zhang J, Chen Z, Kong H. Mol Phylogenet Evol; 2007 Jul 12; 44(1):26-41. PubMed ID: 17434760 [Abstract] [Full Text] [Related]
45. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily. Heard J, Caspi M, Dunn K. Mol Plant Microbe Interact; 1997 Jul 12; 10(5):665-76. PubMed ID: 9204570 [Abstract] [Full Text] [Related]
46. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum. Sun W, Huang W, Li Z, Song C, Liu D, Liu Y, Hayward A, Liu Y, Huang H, Wang Y. Ann Bot; 2014 Mar 12; 113(4):653-68. PubMed ID: 24532606 [Abstract] [Full Text] [Related]
47. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Tsai WC, Pan ZJ, Hsiao YY, Jeng MF, Wu TF, Chen WH, Chen HH. Plant Cell Physiol; 2008 May 12; 49(5):814-24. PubMed ID: 18390881 [Abstract] [Full Text] [Related]
48. Isolation and characterization of new MIKC*-Type MADS-box genes from the moss Physcomitrella patens. Riese M, Faigl W, Quodt V, Verelst W, Matthes A, Saedler H, Münster T. Plant Biol (Stuttg); 2005 May 12; 7(3):307-14. PubMed ID: 15912451 [Abstract] [Full Text] [Related]
49. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Hou CJ, Yang CH. Plant Cell Physiol; 2009 Aug 12; 50(8):1544-57. PubMed ID: 19570813 [Abstract] [Full Text] [Related]
50. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'. Mondragón-Palomino M, Theissen G. Plant J; 2011 Jun 12; 66(6):1008-19. PubMed ID: 21435045 [Abstract] [Full Text] [Related]
51. Cloning, characterization and genetic engineering of FLC homolog in Thellungiella halophila. Fang Q, Xu Z, Song R. Biochem Biophys Res Commun; 2006 Sep 01; 347(3):707-14. PubMed ID: 16844088 [Abstract] [Full Text] [Related]
52. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC. Plant Physiol; 2004 Apr 01; 134(4):1632-41. PubMed ID: 15064378 [Abstract] [Full Text] [Related]
53. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Komiya R, Yokoi S, Shimamoto K. Development; 2009 Oct 01; 136(20):3443-50. PubMed ID: 19762423 [Abstract] [Full Text] [Related]
54. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Leseberg CH, Li A, Kang H, Duvall M, Mao L. Gene; 2006 Aug 15; 378():84-94. PubMed ID: 16831523 [Abstract] [Full Text] [Related]
55. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Battaglia R, Brambilla V, Colombo L, Stuitje AR, Kater MM. Mech Dev; 2006 Apr 15; 123(4):267-76. PubMed ID: 16515858 [Abstract] [Full Text] [Related]
56. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. De Bodt S, Raes J, Florquin K, Rombauts S, Rouzé P, Theissen G, Van de Peer Y. J Mol Evol; 2003 May 15; 56(5):573-86. PubMed ID: 12698294 [Abstract] [Full Text] [Related]
57. Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Benlloch R, Roque E, Ferrándiz C, Cosson V, Caballero T, Penmetsa RV, Beltrán JP, Cañas LA, Ratet P, Madueño F. Plant J; 2009 Oct 15; 60(1):102-11. PubMed ID: 19500303 [Abstract] [Full Text] [Related]
58. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Sundström JF, Nakayama N, Glimelius K, Irish VF. Plant J; 2006 May 15; 46(4):593-600. PubMed ID: 16640596 [Abstract] [Full Text] [Related]
59. Cloning and characterization of a novel PI-like MADS-box gene in Phalaenopsis orchid. Guo B, Zhang T, Shi J, Chen D, Shen D, Ming F. DNA Seq; 2008 Jun 15; 19(3):332-9. PubMed ID: 17852362 [Abstract] [Full Text] [Related]
60. Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Nam J, dePamphilis CW, Ma H, Nei M. Mol Biol Evol; 2003 Sep 15; 20(9):1435-47. PubMed ID: 12777513 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]