These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


827 related items for PubMed ID: 17009857

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Surface-modified LPD nanoparticles for tumor targeting.
    Li SD, Huang L.
    Ann N Y Acad Sci; 2006 Oct; 1082():1-8. PubMed ID: 17145918
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic myeloid leukemia treatment.
    Mendonça LS, Firmino F, Moreira JN, Pedroso de Lima MC, Simões S.
    Bioconjug Chem; 2010 Jan; 21(1):157-68. PubMed ID: 20000596
    [Abstract] [Full Text] [Related]

  • 5. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts.
    Yoshizawa T, Hattori Y, Hakoshima M, Koga K, Maitani Y.
    Eur J Pharm Biopharm; 2008 Nov; 70(3):718-25. PubMed ID: 18647651
    [Abstract] [Full Text] [Related]

  • 6. Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models.
    Pastorino F, Brignole C, Marimpietri D, Pagnan G, Morando A, Ribatti D, Semple SC, Gambini C, Allen TM, Ponzoni M.
    Clin Cancer Res; 2003 Oct 01; 9(12):4595-605. PubMed ID: 14555535
    [Abstract] [Full Text] [Related]

  • 7. Efficient delivery of an antisense oligodeoxyribonucleotide formulated in folate receptor-targeted liposomes.
    Chiu SJ, Marcucci G, Lee RJ.
    Anticancer Res; 2006 Oct 01; 26(2A):1049-56. PubMed ID: 16619505
    [Abstract] [Full Text] [Related]

  • 8. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles.
    Carmona S, Jorgensen MR, Kolli S, Crowther C, Salazar FH, Marion PL, Fujino M, Natori Y, Thanou M, Arbuthnot P, Miller AD.
    Mol Pharm; 2009 Oct 01; 6(3):706-17. PubMed ID: 19159285
    [Abstract] [Full Text] [Related]

  • 9. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery.
    Wang XL, Xu R, Lu ZR.
    J Control Release; 2009 Mar 19; 134(3):207-13. PubMed ID: 19135104
    [Abstract] [Full Text] [Related]

  • 10. Chemosensitization of bladder cancer cells by survivin-directed antisense oligodeoxynucleotides and siRNA.
    Fuessel S, Herrmann J, Ning S, Kotzsch M, Kraemer K, Schmidt U, Hakenberg OW, Wirth MP, Meye A.
    Cancer Lett; 2006 Feb 08; 232(2):243-54. PubMed ID: 16458121
    [Abstract] [Full Text] [Related]

  • 11. An immobilized nanoparticle-based platform for efficient gene knockdown of targeted cells in the circulation.
    Huang Z, King MR.
    Gene Ther; 2009 Oct 08; 16(10):1271-82. PubMed ID: 19554031
    [Abstract] [Full Text] [Related]

  • 12. Nanoparticle formulation enhances the delivery and activity of a vascular endothelial growth factor antisense oligonucleotide in human retinal pigment epithelial cells.
    Aukunuru JV, Ayalasomayajula SP, Kompella UB.
    J Pharm Pharmacol; 2003 Sep 08; 55(9):1199-206. PubMed ID: 14604462
    [Abstract] [Full Text] [Related]

  • 13. Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid.
    Kim HK, Davaa E, Myung CS, Park JS.
    Int J Pharm; 2010 Jun 15; 392(1-2):141-7. PubMed ID: 20347025
    [Abstract] [Full Text] [Related]

  • 14. Targeted delivery of small interfering RNA to angiogenic endothelial cells with liposome-polycation-DNA particles.
    Vader P, Crielaard BJ, van Dommelen SM, van der Meel R, Storm G, Schiffelers RM.
    J Control Release; 2012 Jun 10; 160(2):211-6. PubMed ID: 21983283
    [Abstract] [Full Text] [Related]

  • 15. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges.
    Gomes-da-Silva LC, Fonseca NA, Moura V, Pedroso de Lima MC, Simões S, Moreira JN.
    Acc Chem Res; 2012 Jul 17; 45(7):1163-71. PubMed ID: 22568781
    [Abstract] [Full Text] [Related]

  • 16. The efficiency of CD40 down regulation by siRNA and antisense ODN: comparison of lipofectamine and FuGENE6.
    Ebadi P, Karimi MH, Pourfathollah AA, Saheb Ghadam Lotfi A, Soheili ZS, Samiee S, Hajati S, Nadali F, Geramizadeh B, Moazzeni SM.
    Iran J Immunol; 2009 Mar 17; 6(1):1-11. PubMed ID: 19293472
    [Abstract] [Full Text] [Related]

  • 17. Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL conjugate.
    Kim SH, Mok H, Jeong JH, Kim SW, Park TG.
    Bioconjug Chem; 2006 Mar 17; 17(1):241-4. PubMed ID: 16417275
    [Abstract] [Full Text] [Related]

  • 18. Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells.
    Messerschmidt SK, Musyanovych A, Altvater M, Scheurich P, Pfizenmaier K, Landfester K, Kontermann RE.
    J Control Release; 2009 Jul 01; 137(1):69-77. PubMed ID: 19306900
    [Abstract] [Full Text] [Related]

  • 19. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA.
    Han SE, Kang H, Shim GY, Suh MS, Kim SJ, Kim JS, Oh YK.
    Int J Pharm; 2008 Apr 02; 353(1-2):260-9. PubMed ID: 18178348
    [Abstract] [Full Text] [Related]

  • 20. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo.
    He XW, Liu T, Chen YX, Cheng DJ, Li XR, Xiao Y, Feng YL.
    Cancer Gene Ther; 2008 Mar 02; 15(3):193-202. PubMed ID: 18202713
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 42.