These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
292 related items for PubMed ID: 17011625
1. Compensation of endogenous IgG mediated inhibition of antibody-dependent cellular cytotoxicity by glyco-engineering of therapeutic antibodies. Nechansky A, Schuster M, Jost W, Siegl P, Wiederkum S, Gorr G, Kircheis R. Mol Immunol; 2007 Mar; 44(7):1815-7. PubMed ID: 17011625 [Abstract] [Full Text] [Related]
2. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Ferrara C, Brünker P, Suter T, Moser S, Püntener U, Umaña P. Biotechnol Bioeng; 2006 Apr 05; 93(5):851-61. PubMed ID: 16435400 [Abstract] [Full Text] [Related]
3. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa. Iida S, Misaka H, Inoue M, Shibata M, Nakano R, Yamane-Ohnuki N, Wakitani M, Yano K, Shitara K, Satoh M. Clin Cancer Res; 2006 May 01; 12(9):2879-87. PubMed ID: 16675584 [Abstract] [Full Text] [Related]
4. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC. Repp R, Kellner C, Muskulus A, Staudinger M, Nodehi SM, Glorius P, Akramiene D, Dechant M, Fey GH, van Berkel PH, van de Winkel JG, Parren PW, Valerius T, Gramatzki M, Peipp M. J Immunol Methods; 2011 Oct 28; 373(1-2):67-78. PubMed ID: 21855548 [Abstract] [Full Text] [Related]
5. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. Mol Immunol; 2007 Mar 28; 44(7):1524-34. PubMed ID: 17045339 [Abstract] [Full Text] [Related]
6. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, Baeuerle PA, Prang NS. Mol Immunol; 2006 Mar 28; 43(8):1183-93. PubMed ID: 16102830 [Abstract] [Full Text] [Related]
7. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Niwa R, Hatanaka S, Shoji-Hosaka E, Sakurada M, Kobayashi Y, Uehara A, Yokoi H, Nakamura K, Shitara K. Clin Cancer Res; 2004 Sep 15; 10(18 Pt 1):6248-55. PubMed ID: 15448014 [Abstract] [Full Text] [Related]
8. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M. Biotechnol Bioeng; 2001 Aug 20; 74(4):288-94. PubMed ID: 11410853 [Abstract] [Full Text] [Related]
9. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, Shitara K, Satoh M. Glycobiology; 2007 Jan 20; 17(1):104-18. PubMed ID: 17012310 [Abstract] [Full Text] [Related]
10. Influence of variable N-glycosylation on the cytolytic potential of chimeric CD19 antibodies. Barbin K, Stieglmaier J, Saul D, Stieglmaier K, Stockmeyer B, Pfeiffer M, Lang P, Fey GH. J Immunother; 2006 Jan 20; 29(2):122-33. PubMed ID: 16531813 [Abstract] [Full Text] [Related]
15. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded antibody comprising a single-chain antibody linked the antibody constant region. Natsume A, Wakitani M, Yamane-Ohnuki N, Shoji-Hosaka E, Niwa R, Uchida K, Satoh M, Shitara K. J Immunol Methods; 2005 Nov 30; 306(1-2):93-103. PubMed ID: 16236307 [Abstract] [Full Text] [Related]
16. Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Schuster M, Umana P, Ferrara C, Brünker P, Gerdes C, Waxenecker G, Wiederkum S, Schwager C, Loibner H, Himmler G, Mudde GC. Cancer Res; 2005 Sep 01; 65(17):7934-41. PubMed ID: 16140965 [Abstract] [Full Text] [Related]
17. The "less-is-more" in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. Pereira NA, Chan KF, Lin PC, Song Z. MAbs; 2018 Jul 01; 10(5):693-711. PubMed ID: 29733746 [Abstract] [Full Text] [Related]
18. [EMABling antibodies: from feto-maternal allo-immunisation prophylaxis to chronic lymphocytic leukaemia therapy]. Urbain R, Teillaud JL, Prost JF. Med Sci (Paris); 2009 Dec 01; 25(12):1141-4. PubMed ID: 20035694 [Abstract] [Full Text] [Related]
20. In vitro and in vivo characterization of MDX-1401 for therapy of malignant lymphoma. Cardarelli PM, Moldovan-Loomis MC, Preston B, Black A, Passmore D, Chen TH, Chen S, Liu J, Kuhne MR, Srinivasan M, Assad A, Witte A, Graziano RF, King DJ. Clin Cancer Res; 2009 May 15; 15(10):3376-83. PubMed ID: 19401346 [Abstract] [Full Text] [Related] Page: [Next] [New Search]