These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 17014882

  • 1. Metarhodopsin-II stabilization by crosslinked Gtalpha C-terminal peptides and implications for the mechanism of GPCR-G protein coupling.
    Angel TE, Kraft PC, Dratz EA.
    Vision Res; 2006 Dec; 46(27):4547-55. PubMed ID: 17014882
    [Abstract] [Full Text] [Related]

  • 2. Function of the farnesyl moiety in visual signalling.
    McCarthy NE, Akhtar M.
    Biochem J; 2000 Apr 01; 347 Pt 1(Pt 1):163-71. PubMed ID: 10727415
    [Abstract] [Full Text] [Related]

  • 3. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH, Gibson SK, Liebman PA.
    Biochemistry; 1999 May 25; 38(21):6862-78. PubMed ID: 10346908
    [Abstract] [Full Text] [Related]

  • 4. Phosphorylation stabilizes the active conformation of rhodopsin.
    Gibson SK, Parkes JH, Liebman PA.
    Biochemistry; 1998 Aug 18; 37(33):11393-8. PubMed ID: 9708973
    [Abstract] [Full Text] [Related]

  • 5. G-protein alpha and beta-gamma subunits interact with conformationally distinct signaling states of rhodopsin.
    Downs MA, Arimoto R, Marshall GR, Kisselev OG.
    Vision Res; 2006 Dec 18; 46(27):4442-8. PubMed ID: 16989885
    [Abstract] [Full Text] [Related]

  • 6. Mutation R238E in transducin-alpha yields a GTPase and effector-deficient, but not dominant-negative, G-protein alpha-subunit.
    Barren B, Natochin M, Artemyev NO.
    Mol Vis; 2006 May 12; 12():492-8. PubMed ID: 16735989
    [Abstract] [Full Text] [Related]

  • 7. Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide.
    Sato K, Morizumi T, Yamashita T, Shichida Y.
    Biochemistry; 2010 Feb 02; 49(4):736-41. PubMed ID: 20030396
    [Abstract] [Full Text] [Related]

  • 8. G protein subtype specificity of rhodopsin intermediates metarhodopsin Ib and metarhodopsin II.
    Morizumi T, Kimata N, Terakita A, Imamoto Y, Yamashita T, Shichida Y.
    Photochem Photobiol; 2009 Feb 02; 85(1):57-62. PubMed ID: 18643908
    [Abstract] [Full Text] [Related]

  • 9. Monitoring the interaction of a single G-protein key binding site with rhodopsin disk membranes upon light activation.
    Kim TY, Uji-i H, Möller M, Muls B, Hofkens J, Alexiev U.
    Biochemistry; 2009 May 12; 48(18):3801-3. PubMed ID: 19301833
    [Abstract] [Full Text] [Related]

  • 10. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis.
    Herrmann R, Heck M, Henklein P, Kleuss C, Wray V, Hofmann KP, Ernst OP.
    Vision Res; 2006 Dec 12; 46(27):4582-93. PubMed ID: 17011013
    [Abstract] [Full Text] [Related]

  • 11. Linkage between the intramembrane H-bond network around aspartic acid 83 and the cytosolic environment of helix 8 in photoactivated rhodopsin.
    Lehmann N, Alexiev U, Fahmy K.
    J Mol Biol; 2007 Mar 02; 366(4):1129-41. PubMed ID: 17196983
    [Abstract] [Full Text] [Related]

  • 12. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa, Fesenko EE.
    Mol Biol (Mosk); 1981 Mar 02; 15(6):1276-85. PubMed ID: 7322116
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM, Abdulaev NG, Marino JP, Ridge KD.
    Biochemistry; 2003 Jan 21; 42(2):302-11. PubMed ID: 12525157
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. FTIR spectroscopy of complexes formed between metarhodopsin II and C-terminal peptides from the G-protein alpha- and gamma-subunits.
    Bartl F, Ritter E, Hofmann KP.
    FEBS Lett; 2000 May 12; 473(2):259-64. PubMed ID: 10812086
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential.
    Gibson SK, Parkes JH, Liebman PA.
    Biochemistry; 1999 Aug 24; 38(34):11103-14. PubMed ID: 10460166
    [Abstract] [Full Text] [Related]

  • 20. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S, Hall SE, Vaidehi N.
    J Mol Biol; 2008 Oct 03; 382(2):539-55. PubMed ID: 18638482
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.