These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


241 related items for PubMed ID: 17015442

  • 1. Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain.
    Tate JJ, Feller A, Dubois E, Cooper TG.
    J Biol Chem; 2006 Dec 08; 281(49):37980-92. PubMed ID: 17015442
    [Abstract] [Full Text] [Related]

  • 2. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae.
    Georis I, Tate JJ, Cooper TG, Dubois E.
    J Biol Chem; 2008 Apr 04; 283(14):8919-29. PubMed ID: 18245087
    [Abstract] [Full Text] [Related]

  • 3. Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation.
    Tate JJ, Cooper TG.
    J Biol Chem; 2007 Jun 22; 282(25):18467-18480. PubMed ID: 17439949
    [Abstract] [Full Text] [Related]

  • 4. Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated.
    Tate JJ, Tolley EA, Cooper TG.
    Genetics; 2019 Aug 22; 212(4):1205-1225. PubMed ID: 31213504
    [Abstract] [Full Text] [Related]

  • 5. Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae.
    Cox KH, Kulkarni A, Tate JJ, Cooper TG.
    J Biol Chem; 2004 Mar 12; 279(11):10270-8. PubMed ID: 14679193
    [Abstract] [Full Text] [Related]

  • 6. Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently.
    Tate JJ, Georis I, Feller A, Dubois E, Cooper TG.
    J Biol Chem; 2009 Jan 23; 284(4):2522-34. PubMed ID: 19015262
    [Abstract] [Full Text] [Related]

  • 7. Ammonia-specific regulation of Gln3 localization in Saccharomyces cerevisiae by protein kinase Npr1.
    Tate JJ, Rai R, Cooper TG.
    J Biol Chem; 2006 Sep 22; 281(38):28460-9. PubMed ID: 16864577
    [Abstract] [Full Text] [Related]

  • 8. Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.
    Tate JJ, Rai R, Cooper TG.
    Genetics; 2015 Feb 22; 199(2):455-74. PubMed ID: 25527290
    [Abstract] [Full Text] [Related]

  • 9. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae.
    Tate JJ, Georis I, Dubois E, Cooper TG.
    J Biol Chem; 2010 Jun 04; 285(23):17880-95. PubMed ID: 20378536
    [Abstract] [Full Text] [Related]

  • 10. TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway.
    Jacinto E, Guo B, Arndt KT, Schmelzle T, Hall MN.
    Mol Cell; 2001 Nov 04; 8(5):1017-26. PubMed ID: 11741537
    [Abstract] [Full Text] [Related]

  • 11. Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine.
    Georis I, Tate JJ, Cooper TG, Dubois E.
    J Biol Chem; 2011 Dec 30; 286(52):44897-912. PubMed ID: 22039046
    [Abstract] [Full Text] [Related]

  • 12. Actin cytoskeleton is required for nuclear accumulation of Gln3 in response to nitrogen limitation but not rapamycin treatment in Saccharomyces cerevisiae.
    Cox KH, Tate JJ, Cooper TG.
    J Biol Chem; 2004 Apr 30; 279(18):19294-301. PubMed ID: 14970238
    [Abstract] [Full Text] [Related]

  • 13. Methionine sulfoximine treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae.
    Tate JJ, Rai R, Cooper TG.
    J Biol Chem; 2005 Jul 22; 280(29):27195-204. PubMed ID: 15911613
    [Abstract] [Full Text] [Related]

  • 14. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots.
    Cooper TG.
    FEMS Microbiol Rev; 2002 Aug 22; 26(3):223-38. PubMed ID: 12165425
    [Abstract] [Full Text] [Related]

  • 15. Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae.
    Kulkarni A, Buford TD, Rai R, Cooper TG.
    FEMS Yeast Res; 2006 Mar 22; 6(2):218-29. PubMed ID: 16487345
    [Abstract] [Full Text] [Related]

  • 16. More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in Saccharomyces cerevisiae.
    Tate JJ, Rai R, Cooper TG.
    Genetics; 2018 Jan 22; 208(1):207-227. PubMed ID: 29113979
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Normal function of the yeast TOR pathway requires the type 2C protein phosphatase Ptc1.
    González A, Ruiz A, Casamayor A, Ariño J.
    Mol Cell Biol; 2009 May 22; 29(10):2876-88. PubMed ID: 19273591
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The protein phosphatase Siw14 controls caffeine-induced nuclear localization and phosphorylation of Gln3 via the type 2A protein phosphatases Pph21 and Pph22 in Saccharomyces cerevisiae.
    Numamoto M, Sasano Y, Hirasaki M, Sugiyama M, Maekawa H, Harashima S.
    J Biochem; 2015 Jan 22; 157(1):53-64. PubMed ID: 25313402
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.