These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Practice changes the usage of moment components in executing a multijoint task. Kadota K, Matsuo T, Hashizume K, Tezuka K. Res Q Exerc Sport; 2004 Jun; 75(2):138-47. PubMed ID: 15209332 [Abstract] [Full Text] [Related]
3. Relative contributions to the net joint moment for a planar multijoint throwing skill: early and late in practice. Heise GD, Cornwell A. Res Q Exerc Sport; 1997 Jun; 68(2):116-24. PubMed ID: 9200245 [Abstract] [Full Text] [Related]
6. Mass and velocity: control parameters for throwing patterns. Southard D. Res Q Exerc Sport; 1998 Dec; 69(4):355-67. PubMed ID: 9864754 [Abstract] [Full Text] [Related]
7. A study of the external forces and moments at the shoulder and elbow while performing every day tasks. Murray IA, Johnson GR. Clin Biomech (Bristol); 2004 Jul; 19(6):586-94. PubMed ID: 15234482 [Abstract] [Full Text] [Related]
9. Incomplete posture adjustment during rapid arm movement. Yamasaki H, Fujisawa H, Hoshi F, Nagasaki H. Percept Mot Skills; 2009 Jun; 108(3):915-32. PubMed ID: 19725326 [Abstract] [Full Text] [Related]
10. A preferred pattern of joint coordination during arm movements with redundant degrees of freedom. Dounskaia N, Wang W. J Neurophysiol; 2014 Sep 01; 112(5):1040-53. PubMed ID: 24872537 [Abstract] [Full Text] [Related]
12. Three-dimensional reaching tasks: effect of reaching height and width on upper limb kinematics and muscle activity. Vandenberghe A, Levin O, De Schutter J, Swinnen S, Jonkers I. Gait Posture; 2010 Oct 01; 32(4):500-7. PubMed ID: 20729085 [Abstract] [Full Text] [Related]
13. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement. Debicki DB, Gribble PL. J Neurophysiol; 2004 Aug 01; 92(2):754-65. PubMed ID: 15056688 [Abstract] [Full Text] [Related]
14. Effects of concurrent physical and cognitive demands on arm movement kinematics in a repetitive upper-extremity precision task. Srinivasan D, Mathiassen SE, Samani A, Madeleine P. Hum Mov Sci; 2015 Aug 01; 42():89-99. PubMed ID: 26024788 [Abstract] [Full Text] [Related]
16. Shoulder movements during the initial phase of learning manual wheelchair propulsion in able-bodied subjects. Roux L, Hanneton S, Roby-Brami A. Clin Biomech (Bristol); 2006 Aug 01; 21 Suppl 1():S45-51. PubMed ID: 16274903 [Abstract] [Full Text] [Related]
17. Neuromuscular adaptation during skill acquisition on a two degree-of-freedom target-acquisition task: dynamic movement. Shemmell J, Tresilian JR, Riek S, Barry BK, Carson RG. J Neurophysiol; 2005 Nov 01; 94(5):3058-68. PubMed ID: 15972829 [Abstract] [Full Text] [Related]
18. Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. Gomi H, Osu R. J Neurosci; 1998 Nov 01; 18(21):8965-78. PubMed ID: 9787002 [Abstract] [Full Text] [Related]
19. Learning a throwing task is associated with differential changes in the use of motor abundance. Yang JF, Scholz JP. Exp Brain Res; 2005 May 01; 163(2):137-58. PubMed ID: 15657698 [Abstract] [Full Text] [Related]
20. The size and structure of arm movement variability decreased with work pace in a standardised repetitive precision task. Srinivasan D, Samani A, Mathiassen SE, Madeleine P. Ergonomics; 2015 May 01; 58(1):128-39. PubMed ID: 25216404 [Abstract] [Full Text] [Related] Page: [Next] [New Search]