These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


259 related items for PubMed ID: 17025135

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Electrochemical performance of Li[Ni0.7Co0.1Mn0.2]O2 cathode materials using a co-precipitation method.
    Kim JM, Jin BS, Koo HJ, Choi JM, Kim HS.
    J Nanosci Nanotechnol; 2013 May; 13(5):3303-6. PubMed ID: 23858848
    [Abstract] [Full Text] [Related]

  • 43. MnCo2 O4 /MoO2 Nanosheets Grown on Ni foam as Carbon- and Binder-Free Cathode for Lithium-Oxygen Batteries.
    Cao X, Sun Z, Zheng X, Jin C, Tian J, Li X, Yang R.
    ChemSusChem; 2018 Feb 09; 11(3):574-579. PubMed ID: 29235727
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM.
    ACS Nano; 2010 Jun 22; 4(6):3187-94. PubMed ID: 20455594
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Redox protein noncovalent functionalization of double-wall carbon nanotubes: electrochemical binder-less glucose biosensor.
    Pumera M, Smíd B.
    J Nanosci Nanotechnol; 2007 Oct 22; 7(10):3590-5. PubMed ID: 18330177
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries.
    Park SK, Yu SH, Woo S, Quan B, Lee DC, Kim MK, Sung YE, Piao Y.
    Dalton Trans; 2013 Feb 21; 42(7):2399-405. PubMed ID: 23208383
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. The controllable syntheses and electrochemical study of 1-dimensional nanowires, 2-dimensional nanoplatelets, and 3-dimensional nanotowers of MnO2.
    Yan DW, Wang CR.
    J Nanosci Nanotechnol; 2007 Jul 21; 7(7):2487-93. PubMed ID: 17663269
    [Abstract] [Full Text] [Related]

  • 58. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods.
    Li W, Cheng F, Tao Z, Chen J.
    J Phys Chem B; 2006 Jan 12; 110(1):119-24. PubMed ID: 16471508
    [Abstract] [Full Text] [Related]

  • 59. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium--air batteries.
    Truong TT, Liu Y, Ren Y, Trahey L, Sun Y.
    ACS Nano; 2012 Sep 25; 6(9):8067-77. PubMed ID: 22866870
    [Abstract] [Full Text] [Related]

  • 60. Solvothermal preparation of ZnO nanorods as anode material for improved cycle life Zn/AgO batteries.
    Ullah S, Ahmed F, Badshah A, Ali Altaf A, Raza R, Lal B, Hussain R.
    PLoS One; 2013 Sep 25; 8(10):e75999. PubMed ID: 24146807
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.