These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
219 related items for PubMed ID: 17028032
1. On the lag phase and initial decline of microbial growth curves. Yates GT, Smotzer T. J Theor Biol; 2007 Feb 07; 244(3):511-7. PubMed ID: 17028032 [Abstract] [Full Text] [Related]
2. Accounting for inherent variability of growth in microbial risk assessment. Marks HM, Coleman ME. Int J Food Microbiol; 2005 Apr 15; 100(1-3):275-87. PubMed ID: 15854712 [Abstract] [Full Text] [Related]
3. Predictive modelling of the microbial lag phase: a review. Swinnen IA, Bernaerts K, Dens EJ, Geeraerd AH, Van Impe JF. Int J Food Microbiol; 2004 Jul 15; 94(2):137-59. PubMed ID: 15193801 [Abstract] [Full Text] [Related]
4. Biological implications from an autonomous version of Baranyi and Roberts growth model. Vadasz P, Vadasz AS. Int J Food Microbiol; 2007 Mar 20; 114(3):357-65. PubMed ID: 17140684 [Abstract] [Full Text] [Related]
5. Connection between stochastic and deterministic modelling of microbial growth. Kutalik Z, Razaz M, Baranyi J. J Theor Biol; 2005 Jan 21; 232(2):285-99. PubMed ID: 15530497 [Abstract] [Full Text] [Related]
6. Effect of starvation on expression of the ribosomal RNA rrnB P2 promoter during the lag phase of Pseudomonas fluorescens. McKellar RC. Int J Food Microbiol; 2007 Mar 20; 114(3):307-15. PubMed ID: 17169452 [Abstract] [Full Text] [Related]
7. Cell division theory and individual-based modeling of microbial lag: part I. The theory of cell division. Dens EJ, Bernaerts K, Standaert AR, Van Impe JF. Int J Food Microbiol; 2005 Jun 15; 101(3):303-18. PubMed ID: 15925713 [Abstract] [Full Text] [Related]
8. Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions. Huang L. J Food Sci; 2008 Jun 15; 73(5):E235-42. PubMed ID: 18576996 [Abstract] [Full Text] [Related]
9. Correlation between the change in the kinetics of the ribosomal RNA rrnB P2 promoter and the transition from lag to exponential phase with Pseudomonas fluorescens. McKellar RC. Int J Food Microbiol; 2008 Jan 15; 121(1):11-7. PubMed ID: 18036694 [Abstract] [Full Text] [Related]
10. A parallel study on bacterial growth and inactivation. Baranyi J, Pin C. J Theor Biol; 2001 Jun 07; 210(3):327-36. PubMed ID: 11397133 [Abstract] [Full Text] [Related]
11. Predictive modeling of microorganisms: LAG and LIP in monotonic growth. Vadasz P, Vadasz AS. Int J Food Microbiol; 2005 Jul 25; 102(3):257-75. PubMed ID: 16014294 [Abstract] [Full Text] [Related]
12. The effect of abrupt osmotic shifts on the lag phase duration of physiologically distinct populations of Salmonella typhimurium. Mellefont LA, McMeekin TA, Ross T. Int J Food Microbiol; 2004 Apr 15; 92(2):111-20. PubMed ID: 15109788 [Abstract] [Full Text] [Related]
13. Viable count estimates of lag time responses for Salmonella typhimurium M48 subjected to abrupt osmotic shifts. Mellefont LA, McMeekin TA, Ross T. Int J Food Microbiol; 2005 Dec 15; 105(3):399-410. PubMed ID: 16109449 [Abstract] [Full Text] [Related]
14. Effect of capric, lauric and alpha-linolenic acids on the division time distributions of single cells of Staphylococcus aureus. Sado Kamdem S, Guerzoni ME, Baranyi J, Pin C. Int J Food Microbiol; 2008 Nov 30; 128(1):122-8. PubMed ID: 18793815 [Abstract] [Full Text] [Related]
15. Effect of sub-lethal heating and growth temperature on expression of the ribosomal RNA rrnB P(2) promoter during the lag phase of Pseudomonas fluorescens. McKellar RC. Int J Food Microbiol; 2007 May 10; 116(2):248-59. PubMed ID: 17368596 [Abstract] [Full Text] [Related]
16. Current trends in predictive modelling of microbial lag phenomena. Swinnen IA, Bernaerts K, Dens EJ, Geeraerd AH, Van Impe JF. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001 May 10; 66(3b):495-502. PubMed ID: 15954644 [Abstract] [Full Text] [Related]
17. A prototype model structure for mixed microbial populations in homogeneous food products. Dens EJ, Vereecken KM, Van Impe JF. J Theor Biol; 1999 Dec 07; 201(3):159-70. PubMed ID: 10600360 [Abstract] [Full Text] [Related]
18. Development of a global stochastic model relating the distribution of individual cell and population physiological states. McKellar RC, Lu X. Int J Food Microbiol; 2005 Apr 15; 100(1-3):33-40. PubMed ID: 15854690 [Abstract] [Full Text] [Related]
19. Modeling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples. Baert K, Valero A, De Meulenaer B, Samapundo S, Ahmed MM, Bo L, Debevere J, Devlieghere F. Int J Food Microbiol; 2007 Sep 15; 118(2):139-50. PubMed ID: 17698233 [Abstract] [Full Text] [Related]
20. Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase. Prats C, López D, Giró A, Ferrer J, Valls J. J Theor Biol; 2006 Aug 21; 241(4):939-53. PubMed ID: 16524598 [Abstract] [Full Text] [Related] Page: [Next] [New Search]