These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
220 related items for PubMed ID: 17028130
1. Protein crystallography under xenon and nitrous oxide pressure: comparison with in vivo pharmacology studies and implications for the mechanism of inhaled anesthetic action. Colloc'h N, Sopkova-de Oliveira Santos J, Retailleau P, Vivarès D, Bonneté F, Langlois d'Estainto B, Gallois B, Brisson A, Risso JJ, Lemaire M, Prangé T, Abraini JH. Biophys J; 2007 Jan 01; 92(1):217-24. PubMed ID: 17028130 [Abstract] [Full Text] [Related]
2. Pressure-response analysis of anesthetic gases xenon and nitrous oxide on urate oxidase: a crystallographic study. Marassio G, Prangé T, David HN, Santos JS, Gabison L, Delcroix N, Abraini JH, Colloc'h N. FASEB J; 2011 Jul 01; 25(7):2266-75. PubMed ID: 21421845 [Abstract] [Full Text] [Related]
3. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia. Abraini JH, Marassio G, David HN, Vallone B, Prangé T, Colloc'h N. Anesthesiology; 2014 Nov 01; 121(5):1018-27. PubMed ID: 25211169 [Abstract] [Full Text] [Related]
4. The analgesic effect of xenon on the formalin test in rats: a comparison with nitrous oxide. Fukuda T, Nishimoto C, Hisano S, Miyabe M, Toyooka H. Anesth Analg; 2002 Nov 01; 95(5):1300-4, table of contents. PubMed ID: 12401615 [Abstract] [Full Text] [Related]
5. Expansion of gas bubbles by nitrous oxide and xenon. Benavides R, Maze M, Franks NP. Anesthesiology; 2006 Feb 01; 104(2):299-302. PubMed ID: 16436849 [Abstract] [Full Text] [Related]
6. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Dickinson R, Peterson BK, Banks P, Simillis C, Martin JC, Valenzuela CA, Maze M, Franks NP. Anesthesiology; 2007 Nov 01; 107(5):756-67. PubMed ID: 18073551 [Abstract] [Full Text] [Related]
7. Xenon-Protein Interactions: Characterization by X-Ray Crystallography and Hyper-CEST NMR. Roose BW, Zemerov SD, Dmochowski IJ. Methods Enzymol; 2018 Nov 01; 602():249-272. PubMed ID: 29588032 [Abstract] [Full Text] [Related]
8. Inhaling nitrous oxide or xenon does not influence bowel wall energy balance during porcine bowel obstruction. Pittner A, Nalos M, Theisen M, Ploner F, Brückner UB, Georgieff M, Radermacher P, Fröba G. Anesth Analg; 2002 Jun 01; 94(6):1510-6, table of contents. PubMed ID: 12032017 [Abstract] [Full Text] [Related]
9. The effects of xenon and nitrous oxide gases on alcohol relapse. Vengeliene V, Bessiere B, Pype J, Spanagel R. Alcohol Clin Exp Res; 2014 Feb 01; 38(2):557-63. PubMed ID: 24118055 [Abstract] [Full Text] [Related]
10. Oxygen pressurized X-ray crystallography: probing the dioxygen binding site in cofactorless urate oxidase and implications for its catalytic mechanism. Colloc'h N, Gabison L, Monard G, Altarsha M, Chiadmi M, Marassio G, Sopkova-de Oliveira Santos J, El Hajji M, Castro B, Abraini JH, Prangé T. Biophys J; 2008 Sep 01; 95(5):2415-22. PubMed ID: 18375516 [Abstract] [Full Text] [Related]
11. Xenon as an anesthetic agent. Jordan BD, Wright EL. AANA J; 2010 Oct 01; 78(5):387-92. PubMed ID: 21067086 [Abstract] [Full Text] [Related]
12. Functional relevance of the internal hydrophobic cavity of urate oxidase. Colloc'h N, Prangé T. FEBS Lett; 2014 May 02; 588(9):1715-9. PubMed ID: 24657440 [Abstract] [Full Text] [Related]
13. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP. Mol Pharmacol; 2004 Feb 02; 65(2):443-52. PubMed ID: 14742687 [Abstract] [Full Text] [Related]
14. Defining the role of NMDA receptors in anesthesia: are we there yet? Petrenko AB, Yamakura T, Sakimura K, Baba H. Eur J Pharmacol; 2014 Jan 15; 723():29-37. PubMed ID: 24333550 [Abstract] [Full Text] [Related]
15. Recording Brain Electromagnetic Activity During the Administration of the Gaseous Anesthetic Agents Xenon and Nitrous Oxide in Healthy Volunteers. Pelentritou A, Kuhlmann L, Cormack J, Woods W, Sleigh J, Liley D. J Vis Exp; 2018 Jan 13; (131):. PubMed ID: 29364232 [Abstract] [Full Text] [Related]
16. Increased brain monoaminergic tone after the NMDA receptor GluN2A subunit gene knockout is responsible for resistance to the hypnotic effect of nitrous oxide. Petrenko AB, Yamakura T, Kohno T, Sakimura K, Baba H. Eur J Pharmacol; 2013 Jan 05; 698(1-3):200-5. PubMed ID: 23123346 [Abstract] [Full Text] [Related]
17. The influence of xenon, nitrous oxide and nitrogen on gas bubble expansion during cardiopulmonary bypass. Grocott HP, Sato Y, Homi HM, Smith BE. Eur J Anaesthesiol; 2005 May 05; 22(5):353-8. PubMed ID: 15918383 [Abstract] [Full Text] [Related]
18. Nitrous oxide (N(2)O) requires the N-methyl-D-aspartate receptor for its action in Caenorhabditis elegans. Nagele P, Metz LB, Crowder CM. Proc Natl Acad Sci U S A; 2004 Jun 08; 101(23):8791-6. PubMed ID: 15159532 [Abstract] [Full Text] [Related]
19. Life cycle greenhouse gas emissions of anesthetic drugs. Sherman J, Le C, Lamers V, Eckelman M. Anesth Analg; 2012 May 08; 114(5):1086-90. PubMed ID: 22492186 [Abstract] [Full Text] [Related]
20. Nitrous oxide and xenon increase the efficacy of GABA at recombinant mammalian GABA(A) receptors. Hapfelmeier G, Zieglgänsberger W, Haseneder R, Schneck H, Kochs E. Anesth Analg; 2000 Dec 08; 91(6):1542-9. PubMed ID: 11094015 [Abstract] [Full Text] [Related] Page: [Next] [New Search]