These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
256 related items for PubMed ID: 17034187
21. Surface-initiated atom transfer radical polymerization-induced transformation of selenium nanowires into copper selenide@polystyrene core-shell nanowires. Wang MC, Gates BD. ACS Appl Mater Interfaces; 2013 Oct 09; 5(19):9546-53. PubMed ID: 24041404 [Abstract] [Full Text] [Related]
22. Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. Pan H, Liu B, Yi J, Poh C, Lim S, Ding J, Feng Y, Huan CH, Lin J. J Phys Chem B; 2005 Mar 03; 109(8):3094-8. PubMed ID: 16851327 [Abstract] [Full Text] [Related]
23. Synthesis of InP nanofibers from tri(m-tolyl)phosphine: an alternative route to metal phosphide nanostructures. Wang J, Yang Q, Zhang Z, Li T, Zhang S. Dalton Trans; 2010 Jan 07; (1):227-33. PubMed ID: 20023954 [Abstract] [Full Text] [Related]
24. Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism. Zhang SH, Jiang ZY, Xie ZX, Xu X, Huang RB, Zheng LS. J Phys Chem B; 2005 May 19; 109(19):9416-21. PubMed ID: 16852129 [Abstract] [Full Text] [Related]
25. Optical properties of indium phosphide nanowire ensembles at various temperatures. Lohn AJ, Onishi T, Kobayashi NP. Nanotechnology; 2010 Sep 03; 21(35):355702. PubMed ID: 20689159 [Abstract] [Full Text] [Related]
26. Synthesis of selenium nanowires morphologically directed by Sinorhizobial oligosaccharides. Lee S, Kwon C, Park B, Jung S. Carbohydr Res; 2009 Jul 06; 344(10):1230-4. PubMed ID: 19439268 [Abstract] [Full Text] [Related]
27. The synthesis of twinned silicon carbide nanowires by a catalyst-free pyrolytic deposition technique. Li J, Zhu X, Ding P, Chen Y. Nanotechnology; 2009 Apr 08; 20(14):145602. PubMed ID: 19420530 [Abstract] [Full Text] [Related]
28. Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapor deposition. Zhang XT, Liu Z, Li Q, Hark SK. J Phys Chem B; 2005 Sep 29; 109(38):17913-6. PubMed ID: 16853298 [Abstract] [Full Text] [Related]
29. Sulfur-doped gallium phosphide nanowires and their optoelectronic properties. Chen ZG, Cheng L, Lu GQ, Zou J. Nanotechnology; 2010 Sep 17; 21(37):375701. PubMed ID: 20714054 [Abstract] [Full Text] [Related]
30. Doped ZnO nanowires obtained by thermal annealing. Shan CX, Liu Z, Wong CC, Hark SK. J Nanosci Nanotechnol; 2007 Feb 17; 7(2):700-3. PubMed ID: 17450817 [Abstract] [Full Text] [Related]
31. Growth of InP nanostructures via reaction of indium droplets with phosphide ions: synthesis of InP quantum rods and InP-TiO2 composites. Nedeljković JM, Mićić OI, Ahrenkiel SP, Miedaner A, Nozik AJ. J Am Chem Soc; 2004 Mar 03; 126(8):2632-9. PubMed ID: 14982473 [Abstract] [Full Text] [Related]
32. Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons. Kar S, Chaudhuri S. J Phys Chem B; 2005 Mar 03; 109(8):3298-302. PubMed ID: 16851356 [Abstract] [Full Text] [Related]
33. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Wang J, Gudiksen MS, Duan X, Cui Y, Lieber CM. Science; 2001 Aug 24; 293(5534):1455-7. PubMed ID: 11520977 [Abstract] [Full Text] [Related]
34. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties. Liu Z, Sun K, Jian WB, Xu D, Lin YF, Fang J. Chemistry; 2009 Aug 24; 15(18):4546-52. PubMed ID: 19343761 [Abstract] [Full Text] [Related]
35. Sol-gel template synthesis and photoluminescence of n- and p-type semiconductor oxide nanowires. Cao H, Qiu X, Liang Y, Zhang L, Zhao M, Zhu Q. Chemphyschem; 2006 Feb 13; 7(2):497-501. PubMed ID: 16363017 [Abstract] [Full Text] [Related]
36. The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires. Paiman S, Gao Q, Tan HH, Jagadish C, Pemasiri K, Montazeri M, Jackson HE, Smith LM, Yarrison-Rice JM, Zhang X, Zou J. Nanotechnology; 2009 Jun 03; 20(22):225606. PubMed ID: 19436086 [Abstract] [Full Text] [Related]
37. Zn(II)-PEG 300 globules as soft template for the synthesis of hexagonal ZnO micronuts by the hydrothermal reaction method. Shi X, Pan L, Chen S, Xiao Y, Liu Q, Yuan L, Sun J, Cai L. Langmuir; 2009 May 19; 25(10):5940-8. PubMed ID: 19388644 [Abstract] [Full Text] [Related]
38. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties. Chang MT, Chou LJ, Chueh YL, Lee YC, Hsieh CH, Chen CD, Lan YW, Chen LJ. Small; 2007 Apr 19; 3(4):658-64. PubMed ID: 17315263 [Abstract] [Full Text] [Related]
39. Fabrication, structural characterization and photoluminescence of single-crystal Zn(x)Cd(1-x)S zigzag nanowires. Zhai T, Gu Z, Yang W, Zhang X, Huang J, Zhao Y, Yu D, Fu H, Ma Y, Yao J. Nanotechnology; 2006 Sep 28; 17(18):4644-9. PubMed ID: 21727590 [Abstract] [Full Text] [Related]
40. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties. Yu Y, Jin CH, Wang RH, Chen Q, Peng LM. J Phys Chem B; 2005 Oct 13; 109(40):18772-6. PubMed ID: 16853415 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]