These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


728 related items for PubMed ID: 17034798

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F.
    J Biomech; 2014 Nov 07; 47(14):3531-8. PubMed ID: 25261321
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions.
    Bessho M, Ohnishi I, Matsumoto T, Ohashi S, Matsuyama J, Tobita K, Kaneko M, Nakamura K.
    Bone; 2009 Aug 07; 45(2):226-31. PubMed ID: 19398043
    [Abstract] [Full Text] [Related]

  • 7. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur.
    Koivumäki JE, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jämsä T.
    Bone; 2012 Apr 07; 50(4):824-9. PubMed ID: 22306697
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load.
    Keyak JH, Falkinstein Y.
    Med Eng Phys; 2003 Nov 07; 25(9):781-7. PubMed ID: 14519351
    [Abstract] [Full Text] [Related]

  • 11. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H.
    Med Image Anal; 2015 Aug 07; 24(1):125-134. PubMed ID: 26148575
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur.
    Langton CM, Pisharody S, Keyak JH.
    Med Eng Phys; 2009 Jul 07; 31(6):668-72. PubMed ID: 19230742
    [Abstract] [Full Text] [Related]

  • 14. Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture.
    Bessho M, Ohnishi I, Okazaki H, Sato W, Kominami H, Matsunaga S, Nakamura K.
    J Orthop Sci; 2004 Jul 07; 9(6):545-50. PubMed ID: 16228668
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z, Tal D, Trabelsi N.
    Philos Trans A Math Phys Eng Sci; 2010 Jun 13; 368(1920):2707-23. PubMed ID: 20439270
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.
    Yosibash Z, Trabelsi N, Milgrom C.
    J Biomech; 2007 Jun 13; 40(16):3688-99. PubMed ID: 17706228
    [Abstract] [Full Text] [Related]

  • 20. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS.
    J Biomech Eng; 2008 Jun 13; 130(3):031016. PubMed ID: 18532865
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.