These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
321 related items for PubMed ID: 17042523
1. Electrostatically driven protein aggregation: beta-lactoglobulin at low ionic strength. Majhi PR, Ganta RR, Vanam RP, Seyrek E, Giger K, Dubin PL. Langmuir; 2006 Oct 24; 22(22):9150-9. PubMed ID: 17042523 [Abstract] [Full Text] [Related]
2. Suppression of insulin aggregation by heparin. Giger K, Vanam RP, Seyrek E, Dubin PL. Biomacromolecules; 2008 Sep 24; 9(9):2338-44. PubMed ID: 18698815 [Abstract] [Full Text] [Related]
3. Complex coacervation between beta-lactoglobulin and Acacia gum: a nucleation and growth mechanism. Sanchez C, Mekhloufi G, Renard D. J Colloid Interface Sci; 2006 Jul 15; 299(2):867-73. PubMed ID: 16530214 [Abstract] [Full Text] [Related]
4. pH-Dependent aggregation and disaggregation of native β-lactoglobulin in low salt. Yan Y, Seeman D, Zheng B, Kizilay E, Xu Y, Dubin PL. Langmuir; 2013 Apr 09; 29(14):4584-93. PubMed ID: 23458495 [Abstract] [Full Text] [Related]
5. Characterization and isolation of intermediates in beta-lactoglobulin heat aggregation at high pH. Bauer R, Carrotta R, Rischel C, Ogendal L. Biophys J; 2000 Aug 09; 79(2):1030-8. PubMed ID: 10920033 [Abstract] [Full Text] [Related]
6. Influence of the ionic strength on the heat-induced aggregation of the globular protein beta-lactoglobulin at pH 7. Baussay K, Bon CL, Nicolai T, Durand D, Busnel JP. Int J Biol Macromol; 2004 Apr 09; 34(1-2):21-8. PubMed ID: 15178005 [Abstract] [Full Text] [Related]
8. pH-Induced structural transitions during complexation and coacervation of beta-lactoglobulin and acacia gum. Mekhloufi G, Sanchez C, Renard D, Guillemin S, Hardy J. Langmuir; 2005 Jan 04; 21(1):386-94. PubMed ID: 15620329 [Abstract] [Full Text] [Related]
9. Multiscale characterization of individualized beta-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions. Schmitt C, Bovay C, Vuilliomenet AM, Rouvet M, Bovetto L, Barbar R, Sanchez C. Langmuir; 2009 Jul 21; 25(14):7899-909. PubMed ID: 19594178 [Abstract] [Full Text] [Related]
10. β-Lactoglobulin (BLG) binding to highly charged cationic polymer-grafted magnetic nanoparticles: effect of ionic strength. Qin L, Xu Y, Han H, Liu M, Chen K, Wang S, Wang J, Xu J, Li L, Guo X. J Colloid Interface Sci; 2015 Dec 15; 460():221-9. PubMed ID: 26322494 [Abstract] [Full Text] [Related]
12. Effect of thermal treatment, ionic strength, and pH on the short-term and long-term coalescence stability of beta-lactoglobulin emulsions. Tcholakova S, Denkov ND, Sidzhakova D, Campbell B. Langmuir; 2006 Jul 04; 22(14):6042-52. PubMed ID: 16800657 [Abstract] [Full Text] [Related]
13. Formation of hydrogel particles by thermal treatment of beta-lactoglobulin-chitosan complexes. Hong YH, McClements DJ. J Agric Food Chem; 2007 Jul 11; 55(14):5653-60. PubMed ID: 17567036 [Abstract] [Full Text] [Related]
14. Effect of heparin on protein aggregation: inhibition versus promotion. Xu Y, Seeman D, Yan Y, Sun L, Post J, Dubin PL. Biomacromolecules; 2012 May 14; 13(5):1642-51. PubMed ID: 22497483 [Abstract] [Full Text] [Related]