These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
92 related items for PubMed ID: 17044163
1. Bases of motifs for generating repeated patterns with wild cards. Pisanti N, Crochemore M, Grossi R, Sagot MF. IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(1):40-50. PubMed ID: 17044163 [Abstract] [Full Text] [Related]
3. Finding motifs from all sequences with and without binding sites. Leung HC, Chin FY. Bioinformatics; 2006 Sep 15; 22(18):2217-23. PubMed ID: 16870937 [Abstract] [Full Text] [Related]
4. Voting algorithms for the motif finding problem. Liu X, Ma B, Wang L. Comput Syst Bioinformatics Conf; 2008 Sep 15; 7():37-47. PubMed ID: 19642267 [Abstract] [Full Text] [Related]
6. Finding motifs in the twilight zone. Keich U, Pevzner PA. Bioinformatics; 2002 Oct 15; 18(10):1374-81. PubMed ID: 12376382 [Abstract] [Full Text] [Related]
7. Efficiently finding regulatory elements using correlation with gene expression. Bannai H, Inenaga S, Shinohara A, Takeda M, Miyano S. J Bioinform Comput Biol; 2004 Jun 15; 2(2):273-88. PubMed ID: 15297982 [Abstract] [Full Text] [Related]
8. Subtle motifs: defining the limits of motif finding algorithms. Keich U, Pevzner PA. Bioinformatics; 2002 Oct 15; 18(10):1382-90. PubMed ID: 12376383 [Abstract] [Full Text] [Related]
9. MUSA: a parameter free algorithm for the identification of biologically significant motifs. Mendes ND, Casimiro AC, Santos PM, Sá-Correia I, Oliveira AL, Freitas AT. Bioinformatics; 2006 Dec 15; 22(24):2996-3002. PubMed ID: 17068086 [Abstract] [Full Text] [Related]
10. On counting position weight matrix matches in a sequence, with application to discriminative motif finding. Sinha S. Bioinformatics; 2006 Jul 15; 22(14):e454-63. PubMed ID: 16873507 [Abstract] [Full Text] [Related]
11. Efficient sequential and parallel algorithms for finding edit distance based motifs. Pal S, Xiao P, Rajasekaran S. BMC Genomics; 2016 Aug 18; 17 Suppl 4(Suppl 4):465. PubMed ID: 27557423 [Abstract] [Full Text] [Related]
12. Finding subtle motifs by branching from sample strings. Price A, Ramabhadran S, Pevzner PA. Bioinformatics; 2003 Oct 18; 19 Suppl 2():ii149-55. PubMed ID: 14534184 [Abstract] [Full Text] [Related]
13. Detection of generic spaced motifs using submotif pattern mining. Wijaya E, Rajaraman K, Yiu SM, Sung WK. Bioinformatics; 2007 Jun 15; 23(12):1476-85. PubMed ID: 17483509 [Abstract] [Full Text] [Related]
14. LOGOS: a modular Bayesian model for de novo motif detection. Xing EP, Wu W, Jordan MI, Karp RM. Proc IEEE Comput Soc Bioinform Conf; 2003 Jun 15; 2():266-76. PubMed ID: 16452802 [Abstract] [Full Text] [Related]
15. Tree Gibbs Sampler: identifying conserved motifs without aligning orthologous sequences. Cai X, Hu H, Li XS. Bioinformatics; 2007 Aug 01; 23(15):2013-4. PubMed ID: 17540681 [Abstract] [Full Text] [Related]
16. PEAKS: identification of regulatory motifs by their position in DNA sequences. Bellora N, Farré D, Mar Albà M. Bioinformatics; 2007 Jan 15; 23(2):243-4. PubMed ID: 17098773 [Abstract] [Full Text] [Related]
17. Improved Exact Enumerative Algorithms for the Planted (l, d)-Motif Search Problem. Tanaka S. IEEE/ACM Trans Comput Biol Bioinform; 2014 Jan 15; 11(2):361-74. PubMed ID: 26355783 [Abstract] [Full Text] [Related]
18. Natural similarity measures between position frequency matrices with an application to clustering. Pape UJ, Rahmann S, Vingron M. Bioinformatics; 2008 Feb 01; 24(3):350-7. PubMed ID: 18174183 [Abstract] [Full Text] [Related]
20. EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences. Hu J, Yang YD, Kihara D. BMC Bioinformatics; 2006 Jul 13; 7():342. PubMed ID: 16839417 [Abstract] [Full Text] [Related] Page: [Next] [New Search]