These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 17045288

  • 21. Complex coacervation of β-lactoglobulin - κ-carrageenan aqueous mixtures as affected by polysaccharide sonication.
    Hosseini SM, Emam-Djomeh Z, Razavi SH, Moosavi-Movahedi AA, Saboury AA, Mohammadifar MA, Farahnaky A, Atri MS, Van der Meeren P.
    Food Chem; 2013 Nov 01; 141(1):215-22. PubMed ID: 23768350
    [Abstract] [Full Text] [Related]

  • 22. Gelation of iota-carrageenan and micellar casein mixtures under high hydrostatic pressure.
    Abbasi S, Dickinson E.
    J Agric Food Chem; 2004 Mar 24; 52(6):1705-14. PubMed ID: 15030234
    [Abstract] [Full Text] [Related]

  • 23. β-Casein aids in the formation of a sodium caprate-induced β-lactoglobulin B gel.
    Yuno-Ohta N, Corredig M.
    Colloids Surf B Biointerfaces; 2011 Jun 01; 84(2):442-6. PubMed ID: 21334182
    [Abstract] [Full Text] [Related]

  • 24. Phase behaviors involved in surimi gel system: Effects of phase separation on gelation of myofibrillar protein and kappa-carrageenan.
    Zhang T, Xu X, Ji L, Li Z, Wang Y, Xue Y, Xue C.
    Food Res Int; 2017 Oct 01; 100(Pt 1):361-368. PubMed ID: 28873698
    [Abstract] [Full Text] [Related]

  • 25. Fibril assemblies in aqueous whey protein mixtures.
    Bolder SG, Hendrickx H, Sagis LM, van der Linden E.
    J Agric Food Chem; 2006 Jun 14; 54(12):4229-34. PubMed ID: 16756351
    [Abstract] [Full Text] [Related]

  • 26. pH-Induced structural transitions during complexation and coacervation of beta-lactoglobulin and acacia gum.
    Mekhloufi G, Sanchez C, Renard D, Guillemin S, Hardy J.
    Langmuir; 2005 Jan 04; 21(1):386-94. PubMed ID: 15620329
    [Abstract] [Full Text] [Related]

  • 27. Gelation, phase behavior, and dynamics of β-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths.
    Bolisetty S, Harnau L, Jung JM, Mezzenga R.
    Biomacromolecules; 2012 Oct 08; 13(10):3241-52. PubMed ID: 22924940
    [Abstract] [Full Text] [Related]

  • 28. Associative phase separation of beta-lactoglobulin/pectin solutions: a kinetic study by small angle static light scattering.
    Girard M, Sanchez C, Laneuville SI, Turgeon SL, Gauthier SF.
    Colloids Surf B Biointerfaces; 2004 May 01; 35(1):15-22. PubMed ID: 15261050
    [Abstract] [Full Text] [Related]

  • 29. Effects of heating rate and pH on fracture and water-holding properties of globular protein gels as explained by micro-phase separation.
    Leksrisompong PN, Lanier TC, Foegeding EA.
    J Food Sci; 2012 Feb 01; 77(2):E60-7. PubMed ID: 22250989
    [Abstract] [Full Text] [Related]

  • 30. Irreversible thermal denaturation of beta-lactoglobulin retards adsorption of carrageenan onto beta-lactoglobulin-coated droplets.
    Gu YS, Decker EA, McClements DJ.
    Langmuir; 2006 Aug 29; 22(18):7480-6. PubMed ID: 16922524
    [Abstract] [Full Text] [Related]

  • 31. Electrostatic complexation of β-lactoglobulin aggregates with κ-carrageenan and the resulting emulsifying and foaming properties.
    Zhao M, Hu J, Zhang H, Nishinari K, Fang Y.
    J Dairy Sci; 2020 Oct 29; 103(10):8709-8720. PubMed ID: 32747109
    [Abstract] [Full Text] [Related]

  • 32. Impact of urea on the microstructure of commercial canola protein-carrageenan network: a research note.
    Uruakpa FO, Arntfield SD.
    Int J Biol Macromol; 2006 Mar 30; 38(2):115-9. PubMed ID: 16545864
    [Abstract] [Full Text] [Related]

  • 33. Relation between structural and release properties in a polysaccharide gel system.
    Mangione MR, Giacomazza D, Cavallaro G, Bulone D, Martorana V, San Biagio PL.
    Biophys Chem; 2007 Aug 30; 129(1):18-22. PubMed ID: 17512653
    [Abstract] [Full Text] [Related]

  • 34. Effect of pH on the ternary solution behavior of beta-lactoglobulin.
    Abascal D, Lencki RW.
    Biotechnol Prog; 2004 Aug 30; 20(6):1741-8. PubMed ID: 15575707
    [Abstract] [Full Text] [Related]

  • 35. The effect of the linear charge density of carrageenan on the ion binding investigated by differential scanning calorimetry, dc conductivity, and kHz dielectric relaxation.
    Takemasa M, Nishinari K.
    Colloids Surf B Biointerfaces; 2004 Nov 15; 38(3-4):231-40. PubMed ID: 15542331
    [Abstract] [Full Text] [Related]

  • 36. Novel gelling systems of kappa-, iota- and lambda-carrageenans and their composite gels with cellulose using ionic liquid.
    Prasad K, Kaneko Y, Kadokawa J.
    Macromol Biosci; 2009 Apr 08; 9(4):376-82. PubMed ID: 19003847
    [Abstract] [Full Text] [Related]

  • 37. A new multistep Ca2+-induced cold gelation process for beta-lactoglobulin.
    Veerman C, Baptist H, Sagis LM, van der Linden E.
    J Agric Food Chem; 2003 Jun 18; 51(13):3880-5. PubMed ID: 12797759
    [Abstract] [Full Text] [Related]

  • 38. Alkali cold gelation of whey proteins. Part I: sol-gel-sol(-gel) transitions.
    Mercadé-Prieto R, Gunasekaran S.
    Langmuir; 2009 May 19; 25(10):5785-92. PubMed ID: 19432494
    [Abstract] [Full Text] [Related]

  • 39. Morphology of molecular soy protein fractions in binary composite gels.
    Kasapis S, Tay SL.
    Langmuir; 2009 Aug 04; 25(15):8538-47. PubMed ID: 19203179
    [Abstract] [Full Text] [Related]

  • 40. Bridging the divide between the high- and low-solid analyses in the gelatin/kappa-carrageenan mixture.
    Kasapis S, Al-Marhoobi IM.
    Biomacromolecules; 2005 Aug 04; 6(1):14-23. PubMed ID: 15638497
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.