These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


324 related items for PubMed ID: 17046835

  • 1. PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex.
    Lo SC, Hannink M.
    J Biol Chem; 2006 Dec 08; 281(49):37893-903. PubMed ID: 17046835
    [Abstract] [Full Text] [Related]

  • 2. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M.
    Mol Cell Biol; 2004 Dec 08; 24(24):10941-53. PubMed ID: 15572695
    [Abstract] [Full Text] [Related]

  • 3. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.
    Furukawa M, Xiong Y.
    Mol Cell Biol; 2005 Jan 08; 25(1):162-71. PubMed ID: 15601839
    [Abstract] [Full Text] [Related]

  • 4. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway.
    Zhang DD, Lo SC, Sun Z, Habib GM, Lieberman MW, Hannink M.
    J Biol Chem; 2005 Aug 26; 280(34):30091-9. PubMed ID: 15983046
    [Abstract] [Full Text] [Related]

  • 5. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.
    Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M.
    Mol Cell Biol; 2004 Aug 26; 24(16):7130-9. PubMed ID: 15282312
    [Abstract] [Full Text] [Related]

  • 6. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1.
    Lo SC, Hannink M.
    Mol Cell Biol; 2006 Feb 26; 26(4):1235-44. PubMed ID: 16449638
    [Abstract] [Full Text] [Related]

  • 7. PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria.
    Lo SC, Hannink M.
    Exp Cell Res; 2008 May 01; 314(8):1789-803. PubMed ID: 18387606
    [Abstract] [Full Text] [Related]

  • 8. Inhibitor of Nrf2 (INrf2 or Keap1) protein degrades Bcl-xL via phosphoglycerate mutase 5 and controls cellular apoptosis.
    Niture SK, Jaiswal AK.
    J Biol Chem; 2011 Dec 30; 286(52):44542-56. PubMed ID: 22072718
    [Abstract] [Full Text] [Related]

  • 9. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling.
    Lo SC, Li X, Henzl MT, Beamer LJ, Hannink M.
    EMBO J; 2006 Aug 09; 25(15):3605-17. PubMed ID: 16888629
    [Abstract] [Full Text] [Related]

  • 10. Mitochondrial phosphatase PGAM5 regulates Keap1-mediated Bcl-xL degradation and controls cardiomyocyte apoptosis driven by myocardial ischemia/reperfusion injury.
    Yang C, Liu X, Yang F, Zhang W, Chen Z, Yan D, You Q, Wu X.
    In Vitro Cell Dev Biol Anim; 2017 Mar 09; 53(3):248-257. PubMed ID: 27815660
    [Abstract] [Full Text] [Related]

  • 11. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.
    Zhang DD, Hannink M.
    Mol Cell Biol; 2003 Nov 09; 23(22):8137-51. PubMed ID: 14585973
    [Abstract] [Full Text] [Related]

  • 12. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z, Zhang S, Chan JY, Zhang DD.
    Mol Cell Biol; 2007 Sep 09; 27(18):6334-49. PubMed ID: 17636022
    [Abstract] [Full Text] [Related]

  • 13. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A, Motohashi H.
    Nitric Oxide; 2011 Aug 01; 25(2):153-60. PubMed ID: 21385624
    [Abstract] [Full Text] [Related]

  • 14. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis.
    Stępkowski TM, Kruszewski MK.
    Free Radic Biol Med; 2011 May 01; 50(9):1186-95. PubMed ID: 21295136
    [Abstract] [Full Text] [Related]

  • 15. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase.
    Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA.
    Mol Cell Biol; 2004 Oct 01; 24(19):8477-86. PubMed ID: 15367669
    [Abstract] [Full Text] [Related]

  • 16. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M, Swift SR, Hayes JD.
    Toxicol Appl Pharmacol; 2018 Dec 01; 360():45-57. PubMed ID: 30261176
    [Abstract] [Full Text] [Related]

  • 17. Sp1 is a substrate of Keap1 and regulates the activity of CRL4AWDR23 ubiquitin ligase toward Nrf2.
    Siswanto FM, Oguro A, Imaoka S.
    J Biol Chem; 2021 Dec 01; 296():100704. PubMed ID: 33895141
    [Abstract] [Full Text] [Related]

  • 18. Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate.
    Mulvaney KM, Matson JP, Siesser PF, Tamir TY, Goldfarb D, Jacobs TM, Cloer EW, Harrison JS, Vaziri C, Cook JG, Major MB.
    J Biol Chem; 2016 Nov 04; 291(45):23719-23733. PubMed ID: 27621311
    [Abstract] [Full Text] [Related]

  • 19. KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells.
    Xu Y, Fang F, Miriyala S, Crooks PA, Oberley TD, Chaiswing L, Noel T, Holley AK, Zhao Y, Kiningham KK, Clair DK, Clair WH.
    Cancer Res; 2013 Jul 15; 73(14):4406-17. PubMed ID: 23674500
    [Abstract] [Full Text] [Related]

  • 20. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K, Motohashi H, Yamamoto M.
    Genes Cells; 2011 Feb 15; 16(2):123-40. PubMed ID: 21251164
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.