These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
919 related items for PubMed ID: 17049586
1. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K, Otsuki T, Okayama A, Minematsu K, Naritomi H, Honda S, Tomoike H, Miyata T. Thromb Res; 2007; 120(2):181-6. PubMed ID: 17049586 [Abstract] [Full Text] [Related]
2. Influence of clinical and genetic factors on warfarin dose requirements among Japanese patients. Ohno M, Yamamoto A, Ono A, Miura G, Funamoto M, Takemoto Y, Otsu K, Kouno Y, Tanabe T, Masunaga Y, Nonen S, Fujio Y, Azuma J. Eur J Clin Pharmacol; 2009 Nov; 65(11):1097-103. PubMed ID: 19582440 [Abstract] [Full Text] [Related]
3. Combined genetic profiles of components and regulators of the vitamin K-dependent gamma-carboxylation system affect individual sensitivity to warfarin. Vecsler M, Loebstein R, Almog S, Kurnik D, Goldman B, Halkin H, Gak E. Thromb Haemost; 2006 Feb; 95(2):205-11. PubMed ID: 16493479 [Abstract] [Full Text] [Related]
4. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V. Thromb Haemost; 2006 May; 95(5):782-7. PubMed ID: 16676068 [Abstract] [Full Text] [Related]
5. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. Carlquist JF, Horne BD, Muhlestein JB, Lappé DL, Whiting BM, Kolek MJ, Clarke JL, James BC, Anderson JL. J Thromb Thrombolysis; 2006 Dec; 22(3):191-7. PubMed ID: 17111199 [Abstract] [Full Text] [Related]
6. Genetic determinants of acenocoumarol and phenprocoumon maintenance dose requirements. Cadamuro J, Dieplinger B, Felder T, Kedenko I, Mueller T, Haltmayer M, Patsch W, Oberkofler H. Eur J Clin Pharmacol; 2010 Mar; 66(3):253-60. PubMed ID: 20020283 [Abstract] [Full Text] [Related]
7. [Impact of five genetic polymorphisms on inter-individual variation in warfarin maintenance dose]. Huang SW, Xiang DK, Wu HL, Chen BL, An BQ, Li GF. Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2011 Dec; 28(6):661-5. PubMed ID: 22161100 [Abstract] [Full Text] [Related]
8. [Possible application of pharmacogenomics to warfarin therapy]. Murata M. Rinsho Byori; 2011 Jun; 59(6):594-7. PubMed ID: 21815482 [Abstract] [Full Text] [Related]
10. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Miao L, Yang J, Huang C, Shen Z. Eur J Clin Pharmacol; 2007 Dec; 63(12):1135-41. PubMed ID: 17899045 [Abstract] [Full Text] [Related]
11. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, Wallerman O, Melhus H, Wadelius C, Bentley D, Deloukas P. Pharmacogenomics J; 2005 Dec; 5(4):262-70. PubMed ID: 15883587 [Abstract] [Full Text] [Related]
12. Clinical relevance of VKORC1 (G-1639A and C1173T) and CYP2C9*3 among patients on warfarin. Teh LK, Langmia IM, Fazleen Haslinda MH, Ngow HA, Roziah MJ, Harun R, Zakaria ZA, Salleh MZ. J Clin Pharm Ther; 2012 Apr; 37(2):232-6. PubMed ID: 21507031 [Abstract] [Full Text] [Related]
13. Effect of CYP2C9, VKORC1, CYP4F2 and GGCX genetic variants on warfarin maintenance dose and explicating a new pharmacogenetic algorithm in South Indian population. Krishna Kumar D, Shewade DG, Loriot MA, Beaune P, Balachander J, Sai Chandran BV, Adithan C. Eur J Clin Pharmacol; 2014 Jan; 70(1):47-56. PubMed ID: 24019055 [Abstract] [Full Text] [Related]
14. Genetic and clinical determinants influencing warfarin dosing in children with heart disease. Nguyen N, Anley P, Yu MY, Zhang G, Thompson AA, Jennings LJ. Pediatr Cardiol; 2013 Apr; 34(4):984-90. PubMed ID: 23183958 [Abstract] [Full Text] [Related]
15. Influence of CYP2C9 and vitamin k oxide reductase complex (VKORC)1 polymorphisms on time to determine the warfarin maintenance dose. Aomori T, Obayashi K, Fujita Y, Araki T, Nakamura K, Nakamura T, Kurabayashi M, Yamamoto K. Pharmazie; 2011 Mar; 66(3):222-5. PubMed ID: 21553655 [Abstract] [Full Text] [Related]
16. Pharmacogenetics of target genes across the warfarin pharmacological pathway. Lal S, Jada SR, Xiang X, Lim WT, Lee EJ, Chowbay B. Clin Pharmacokinet; 2006 Mar; 45(12):1189-200. PubMed ID: 17112295 [Abstract] [Full Text] [Related]
17. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Loebstein R, Vecsler M, Kurnik D, Austerweil N, Gak E, Halkin H, Almog S. Clin Pharmacol Ther; 2005 May; 77(5):365-72. PubMed ID: 15900282 [Abstract] [Full Text] [Related]
18. VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Obayashi K, Nakamura K, Kawana J, Ogata H, Hanada K, Kurabayashi M, Hasegawa A, Yamamoto K, Horiuchi R. Clin Pharmacol Ther; 2006 Aug; 80(2):169-78. PubMed ID: 16890578 [Abstract] [Full Text] [Related]
19. The impact of genetic polymorphisms and patient characteristics on warfarin dose requirements: a cross-sectional study in Iran. Namazi S, Azarpira N, Hendijani F, Khorshid MB, Vessal G, Mehdipour AR. Clin Ther; 2010 Jun; 32(6):1050-60. PubMed ID: 20637959 [Abstract] [Full Text] [Related]
20. Impact of CYP2C9*3, VKORC1-1639, CYP4F2rs2108622 genetic polymorphism and clinical factors on warfarin maintenance dose in Han-Chinese patients. Liang R, Li L, Li C, Gao Y, Liu W, Hu D, Sun Y. J Thromb Thrombolysis; 2012 Jul; 34(1):120-5. PubMed ID: 22528326 [Abstract] [Full Text] [Related] Page: [Next] [New Search]