These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
439 related items for PubMed ID: 17051653
1. Directed evolution of a non-heme-iron-dependent extradiol catechol dioxygenase: identification of mutants with intradiol oxidative cleavage activity. Schlosrich J, Eley KL, Crowley PJ, Bugg TD. Chembiochem; 2006 Dec; 7(12):1899-908. PubMed ID: 17051653 [Abstract] [Full Text] [Related]
2. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Mayilmurugan R, Visvaganesan K, Suresh E, Palaniandavar M. Inorg Chem; 2009 Sep 21; 48(18):8771-83. PubMed ID: 19694480 [Abstract] [Full Text] [Related]
3. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). Mendel S, Arndt A, Bugg TD. Biochemistry; 2004 Oct 26; 43(42):13390-6. PubMed ID: 15491145 [Abstract] [Full Text] [Related]
4. Investigation of acid-base catalysis in the extradiol and intradiol catechol dioxygenase reactions using a broad specificity mutant enzyme and model chemistry. Brivio M, Schlosrich J, Ahmad M, Tolond C, Bugg TD. Org Biomol Chem; 2009 Apr 07; 7(7):1368-73. PubMed ID: 19300822 [Abstract] [Full Text] [Related]
5. Lactone synthesis activity in a site-directed mutant of an extradiol catechol dioxygenase enzyme. Mendel S, Arndt A, Bugg TD. Chem Commun (Camb); 2005 Feb 07; (5):666-8. PubMed ID: 15672171 [Abstract] [Full Text] [Related]
6. Novel iron(III) complexes of sterically hindered 4N ligands: regioselectivity in biomimetic extradiol cleavage of catechols. Mayilmurugan R, Stoeckli-Evans H, Palaniandavar M. Inorg Chem; 2008 Aug 04; 47(15):6645-58. PubMed ID: 18597419 [Abstract] [Full Text] [Related]
7. Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases. Bruijnincx PC, Lutz M, Spek AL, Hagen WR, Weckhuysen BM, van Koten G, Gebbink RJ. J Am Chem Soc; 2007 Feb 28; 129(8):2275-86. PubMed ID: 17266307 [Abstract] [Full Text] [Related]
8. Molecular basis for the substrate selectivity of bicyclic and monocyclic extradiol dioxygenases. Vaillancourt FH, Fortin PD, Labbé G, Drouin NM, Karim Z, Agar NY, Eltis LD. Biochem Biophys Res Commun; 2005 Dec 09; 338(1):215-22. PubMed ID: 16165093 [Abstract] [Full Text] [Related]
9. Novel iron(III) complexes of tripodal and linear tetradentate bis(phenolate) ligands: close relevance to intradiol-cleaving catechol dioxygenases. Velusamy M, Palaniandavar M, Gopalan RS, Kulkarni GU. Inorg Chem; 2003 Dec 15; 42(25):8283-93. PubMed ID: 14658880 [Abstract] [Full Text] [Related]
10. Isolation and partial characterization of an extradiol non-haem iron dioxygenase which preferentially cleaves 3-methylcatechol. Wallis MG, Chapman SK. Biochem J; 1990 Mar 01; 266(2):605-9. PubMed ID: 2317207 [Abstract] [Full Text] [Related]
11. Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad. Bassan A, Borowski T, Siegbahn PE. Dalton Trans; 2004 Oct 21; (20):3153-62. PubMed ID: 15483690 [Abstract] [Full Text] [Related]
12. Conversion of extradiol aromatic ring-cleaving homoprotocatechuate 2,3-dioxygenase into an intradiol cleaving enzyme. Groce SL, Lipscomb JD. J Am Chem Soc; 2003 Oct 01; 125(39):11780-1. PubMed ID: 14505375 [Abstract] [Full Text] [Related]
13. Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases. Siegbahn PE, Haeffner F. J Am Chem Soc; 2004 Jul 28; 126(29):8919-32. PubMed ID: 15264822 [Abstract] [Full Text] [Related]
14. Cloning of a gene encoding hydroxyquinol 1,2-dioxygenase that catalyzes both intradiol and extradiol ring cleavage of catechol. Murakami S, Okuno T, Matsumura E, Takenaka S, Shinke R, Aoki K. Biosci Biotechnol Biochem; 1999 May 28; 63(5):859-65. PubMed ID: 10380628 [Abstract] [Full Text] [Related]
15. Evidence from mechanistic probes for distinct hydroperoxide rearrangement mechanisms in the intradiol and extradiol catechol dioxygenases. Xin M, Bugg TD. J Am Chem Soc; 2008 Aug 06; 130(31):10422-30. PubMed ID: 18627158 [Abstract] [Full Text] [Related]
16. Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6. Kasai D, Masai E, Miyauchi K, Katayama Y, Fukuda M. J Bacteriol; 2005 Aug 06; 187(15):5067-74. PubMed ID: 16030198 [Abstract] [Full Text] [Related]
17. 4-nitrocatechol as a probe of a Mn(II)-dependent extradiol-cleaving catechol dioxygenase (MndD): comparison with relevant Fe(II) and Mn(II) model complexes. Reynolds MF, Costas M, Ito M, Jo DH, Tipton AA, Whiting AK, Que L. J Biol Inorg Chem; 2003 Feb 06; 8(3):263-72. PubMed ID: 12589562 [Abstract] [Full Text] [Related]
18. DFT study on the catalytic reactivity of a functional model complex for intradiol-cleaving dioxygenases. Georgiev V, Noack H, Borowski T, Blomberg MR, Siegbahn PE. J Phys Chem B; 2010 May 06; 114(17):5878-85. PubMed ID: 20387788 [Abstract] [Full Text] [Related]
19. Mechanism for catechol ring cleavage by non-heme iron intradiol dioxygenases: a hybrid DFT study. Borowski T, Siegbahn PE. J Am Chem Soc; 2006 Oct 04; 128(39):12941-53. PubMed ID: 17002391 [Abstract] [Full Text] [Related]
20. Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Sugimoto K, Senda T, Aoshima H, Masai E, Fukuda M, Mitsui Y. Structure; 1999 Aug 15; 7(8):953-65. PubMed ID: 10467151 [Abstract] [Full Text] [Related] Page: [Next] [New Search]