These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
247 related items for PubMed ID: 17057703
1. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J. Nat Biotechnol; 2006 Nov; 24(11):1441-7. PubMed ID: 17057703 [Abstract] [Full Text] [Related]
3. Engineering triterpene metabolism in tobacco. Wu S, Jiang Z, Kempinski C, Eric Nybo S, Husodo S, Williams R, Chappell J. Planta; 2012 Sep; 236(3):867-77. PubMed ID: 22729821 [Abstract] [Full Text] [Related]
4. Increased sesqui- and triterpene production by co-expression of HMG-CoA reductase and biotin carboxyl carrier protein in tobacco (Nicotiana benthamiana). Lee AR, Kwon M, Kang MK, Kim J, Kim SU, Ro DK. Metab Eng; 2019 Mar; 52():20-28. PubMed ID: 30389612 [Abstract] [Full Text] [Related]
5. Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants. Henry LK, Gutensohn M, Thomas ST, Noel JP, Dudareva N. Proc Natl Acad Sci U S A; 2015 Aug 11; 112(32):10050-5. PubMed ID: 26216978 [Abstract] [Full Text] [Related]
6. Limonene production in tobacco with Perilla limonene synthase cDNA. Ohara K, Ujihara T, Endo T, Sato F, Yazaki K. J Exp Bot; 2003 Dec 11; 54(393):2635-42. PubMed ID: 14585822 [Abstract] [Full Text] [Related]
7. Monoterpene biosynthesis potential of plant subcellular compartments. Dong L, Jongedijk E, Bouwmeester H, Van Der Krol A. New Phytol; 2016 Jan 11; 209(2):679-90. PubMed ID: 26356766 [Abstract] [Full Text] [Related]
8. Metabolic engineering by plastid transformation as a strategy to modulate isoprenoid yield in plants. Hasunuma T, Kondo A, Miyake C. Methods Mol Biol; 2010 Jan 11; 643():213-27. PubMed ID: 20552454 [Abstract] [Full Text] [Related]
9. Engineering Triterpene and Methylated Triterpene Production in Plants Provides Biochemical and Physiological Insights into Terpene Metabolism. Jiang Z, Kempinski C, Bush CJ, Nybo SE, Chappell J. Plant Physiol; 2016 Feb 11; 170(2):702-16. PubMed ID: 26603654 [Abstract] [Full Text] [Related]
10. The biosynthesis of isoprenoids and the mechanisms regulating it in plants. Okada K. Biosci Biotechnol Biochem; 2011 Feb 11; 75(7):1219-25. PubMed ID: 21737944 [Abstract] [Full Text] [Related]
15. Production of multiple terpenes of different chain lengths by subcellular targeting of multi-substrate terpene synthase in plants. Dhandapani S, Tjhang JG, Jang IC. Metab Eng; 2020 Sep 11; 61():397-405. PubMed ID: 32795613 [Abstract] [Full Text] [Related]
16. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Mahmoud SS, Williams M, Croteau R. Phytochemistry; 2004 Mar 11; 65(5):547-54. PubMed ID: 15003417 [Abstract] [Full Text] [Related]
17. Production of mono- and sesquiterpenes in Camelina sativa oilseed. Augustin JM, Higashi Y, Feng X, Kutchan TM. Planta; 2015 Sep 11; 242(3):693-708. PubMed ID: 26223979 [Abstract] [Full Text] [Related]
19. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Orlova I, Nagegowda DA, Kish CM, Gutensohn M, Maeda H, Varbanova M, Fridman E, Yamaguchi S, Hanada A, Kamiya Y, Krichevsky A, Citovsky V, Pichersky E, Dudareva N. Plant Cell; 2009 Dec 11; 21(12):4002-17. PubMed ID: 20028839 [Abstract] [Full Text] [Related]
20. Overcoming Bottlenecks for Metabolic Engineering of Sesquiterpene Production in Tomato Fruits. Gutensohn M, Henry LK, Gentry SA, Lynch JH, Nguyen TTH, Pichersky E, Dudareva N. Front Plant Sci; 2021 Dec 11; 12():691754. PubMed ID: 34220915 [Abstract] [Full Text] [Related] Page: [Next] [New Search]