These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


249 related items for PubMed ID: 1705929

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase.
    Poolman B, Royer TJ, Mainzer SE, Schmidt BF.
    J Bacteriol; 1990 Jul; 172(7):4037-47. PubMed ID: 1694527
    [Abstract] [Full Text] [Related]

  • 8. Molecular analysis of the lac operon encoding the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter.
    Williams SG, Greenwood JA, Jones CW.
    Mol Microbiol; 1992 Jul; 6(13):1755-68. PubMed ID: 1630315
    [Abstract] [Full Text] [Related]

  • 9. Expression and nucleotide sequence of the Lactobacillus bulgaricus beta-galactosidase gene cloned in Escherichia coli.
    Schmidt BF, Adams RM, Requadt C, Power S, Mainzer SE.
    J Bacteriol; 1989 Feb; 171(2):625-35. PubMed ID: 2492511
    [Abstract] [Full Text] [Related]

  • 10. Coregulation of the Kluyveromyces lactis lactose permease and beta-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter.
    Gödecke A, Zachariae W, Arvanitidis A, Breunig KD.
    Nucleic Acids Res; 1991 Oct 11; 19(19):5351-8. PubMed ID: 1923819
    [Abstract] [Full Text] [Related]

  • 11. Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli.
    Brabetz W, Liebl W, Schleifer KH.
    Arch Microbiol; 1991 Oct 11; 155(6):607-12. PubMed ID: 1953301
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Mutations in the lacY gene of Escherichia coli define functional organization of lactose permease.
    Mieschendahl M, Büchel D, Bocklage H, Müller-Hill B.
    Proc Natl Acad Sci U S A; 1981 Dec 11; 78(12):7652-6. PubMed ID: 6278484
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Possible mechanisms underlying the slow lactose fermentation phenotype in Shigella spp.
    Ito H, Kido N, Arakawa Y, Ohta M, Sugiyama T, Kato N.
    Appl Environ Microbiol; 1991 Oct 11; 57(10):2912-7. PubMed ID: 1746953
    [Abstract] [Full Text] [Related]

  • 17. Sugar transport by the bacterial phosphotransferase system. Regulation of other transport systems (lactose and melibiose).
    Mitchell WJ, Misko TP, Roseman S.
    J Biol Chem; 1982 Dec 10; 257(23):14553-64. PubMed ID: 6815195
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis.
    de Vos WM, Boerrigter I, van Rooyen RJ, Reiche B, Hengstenberg W.
    J Biol Chem; 1990 Dec 25; 265(36):22554-60. PubMed ID: 2125052
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.