These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 17064134

  • 1. Temperature-controlled growth of ZnO nanowires and nanoplates in the temperature range 250-300 degrees C.
    Xu C, Kim D, Chun J, Rho K, Chon B, Hong S, Joo T.
    J Phys Chem B; 2006 Nov 02; 110(43):21741-6. PubMed ID: 17064134
    [Abstract] [Full Text] [Related]

  • 2. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process.
    Zhu H, Iqbal J, Xu H, Yu D.
    J Chem Phys; 2008 Sep 28; 129(12):124713. PubMed ID: 19045054
    [Abstract] [Full Text] [Related]

  • 3. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport.
    Kuo TJ, Huang MH.
    J Phys Chem B; 2006 Jul 20; 110(28):13717-21. PubMed ID: 16836315
    [Abstract] [Full Text] [Related]

  • 4. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles.
    Petersen EW, Likovich EM, Russell KJ, Narayanamurti V.
    Nanotechnology; 2009 Oct 07; 20(40):405603. PubMed ID: 19738315
    [Abstract] [Full Text] [Related]

  • 5. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method.
    Li S, Zhang X, Yan B, Yu T.
    Nanotechnology; 2009 Dec 09; 20(49):495604. PubMed ID: 19893154
    [Abstract] [Full Text] [Related]

  • 6. Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires.
    Shen G, Cho JH, Yoo JK, Yi GC, Lee CJ.
    J Phys Chem B; 2005 Mar 31; 109(12):5491-6. PubMed ID: 16851588
    [Abstract] [Full Text] [Related]

  • 7. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N, Zhang T, Lee PS.
    Nanotechnology; 2009 May 13; 20(19):195605. PubMed ID: 19420644
    [Abstract] [Full Text] [Related]

  • 8. The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct.
    Black K, Jones AC, Alexandrou I, Heys PN, Chalker PR.
    Nanotechnology; 2010 Jan 29; 21(4):045701. PubMed ID: 20009167
    [Abstract] [Full Text] [Related]

  • 9. Low-temperature vapour-liquid-solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment.
    Bettge M, MacLaren S, Burdin S, Wen JG, Abraham D, Petrov I, Sammann E.
    Nanotechnology; 2009 Mar 18; 20(11):115607. PubMed ID: 19420447
    [Abstract] [Full Text] [Related]

  • 10. High surface-to-volume ratio ZnO microberets: low temperature synthesis, characterization, and photoluminescence.
    Lu H, Liao L, Li J, Wang D, He H, Fu Q, Xu L, Tian Y.
    J Phys Chem B; 2006 Nov 23; 110(46):23211-4. PubMed ID: 17107167
    [Abstract] [Full Text] [Related]

  • 11. Photoluminescence and Raman scattering from catalytically grown Zn(x)Cd(1-x)Se alloy nanowires.
    Venugopal R, Lin PI, Chen YT.
    J Phys Chem B; 2006 Jun 22; 110(24):11691-6. PubMed ID: 16800464
    [Abstract] [Full Text] [Related]

  • 12. Synthesis of hierarchical pure ZnO nanostructures with controllable morphology.
    Fan DH, Zhu YF, Shen WZ.
    J Nanosci Nanotechnol; 2008 Dec 22; 8(12):6325-31. PubMed ID: 19205201
    [Abstract] [Full Text] [Related]

  • 13. Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO.
    Ding Y, Gao PX, Wang ZL.
    J Am Chem Soc; 2004 Feb 25; 126(7):2066-72. PubMed ID: 14971941
    [Abstract] [Full Text] [Related]

  • 14. Systematic study on experimental conditions for large-scale growth of aligned ZnO nanowires on nitrides.
    Song J, Wang X, Riedo E, Wang ZL.
    J Phys Chem B; 2005 May 26; 109(20):9869-72. PubMed ID: 16852193
    [Abstract] [Full Text] [Related]

  • 15. Attachment-driven morphology evolvement of rectangular ZnO nanowires.
    Zhang DF, Sun LD, Yin JL, Yan CH, Wang RM.
    J Phys Chem B; 2005 May 12; 109(18):8786-90. PubMed ID: 16852043
    [Abstract] [Full Text] [Related]

  • 16. Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition.
    Chang YM, Jian SR, Lee HY, Lin CM, Juang JY.
    Nanotechnology; 2010 Sep 24; 21(38):385705. PubMed ID: 20798465
    [Abstract] [Full Text] [Related]

  • 17. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process.
    Pal U, Santiago P.
    J Phys Chem B; 2005 Aug 18; 109(32):15317-21. PubMed ID: 16852941
    [Abstract] [Full Text] [Related]

  • 18. Growth and optical properties of ZnO low-dimensional nanostructures.
    Liu Y, Tong Y.
    J Nanosci Nanotechnol; 2008 Mar 18; 8(3):1101-9. PubMed ID: 18468110
    [Abstract] [Full Text] [Related]

  • 19. Growth behaviour of well-aligned ZnO nanowires on a Si substrate at low temperature and their optical properties.
    Jeong JS, Lee JY, Cho JH, Lee CJ, An SJ, Yi GC, Gronsky R.
    Nanotechnology; 2005 Oct 18; 16(10):2455-61. PubMed ID: 20818035
    [Abstract] [Full Text] [Related]

  • 20. Controllable synthesis and optical properties of novel ZnO cone arrays via vapor transport at low temperature.
    Han X, Wang G, Jie J, Choy WC, Luo Y, Yuk TI, Hou JG.
    J Phys Chem B; 2005 Feb 24; 109(7):2733-8. PubMed ID: 16851281
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.