These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
287 related items for PubMed ID: 17064164
1. Thermodynamic basis for cluster kinetics: Prediction of the fragility of marginal metallic glass-forming liquids. Hu L, Bian X, Qin X, Yue Y, Zhao Y, Wang C. J Phys Chem B; 2006 Nov 02; 110(43):21950-7. PubMed ID: 17064164 [Abstract] [Full Text] [Related]
2. Enthalpy relaxation upon glass transition and kinetic fragility of molecular liquids. Wang LM. J Phys Chem B; 2009 Apr 16; 113(15):5168-71. PubMed ID: 19267441 [Abstract] [Full Text] [Related]
7. Gaussian excitations model for glass-former dynamics and thermodynamics. Matyushov DV, Angell CA. J Chem Phys; 2007 Mar 07; 126(9):094501. PubMed ID: 17362109 [Abstract] [Full Text] [Related]
8. Moderately and strongly supercooled liquids: a temperature-derivative study of the primary relaxation time scale. Kokshenev VB, Borges PD, Sullivan NS. J Chem Phys; 2005 Mar 15; 122(11):114510. PubMed ID: 15836232 [Abstract] [Full Text] [Related]
9. Freezing-in and production of entropy in vitrification. Möller J, Gutzow I, Schmelzer JW. J Chem Phys; 2006 Sep 07; 125(9):094505. PubMed ID: 16965095 [Abstract] [Full Text] [Related]
10. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model. Micoulaut M. J Phys Condens Matter; 2010 Jul 21; 22(28):285101. PubMed ID: 21399290 [Abstract] [Full Text] [Related]
11. Theory of aging in structural glasses. Lubchenko V, Wolynes PG. J Chem Phys; 2004 Aug 15; 121(7):2852-65. PubMed ID: 15291595 [Abstract] [Full Text] [Related]
12. Relaxation time dispersions in glass forming metallic liquids and glasses. Wang LM, Liu R, Wang WH. J Chem Phys; 2008 Apr 28; 128(16):164503. PubMed ID: 18447455 [Abstract] [Full Text] [Related]
13. Enthalpy and dielectric relaxations in supercooled methyl m-toluate. Chen Z, Zhao Y, Wang LM. J Chem Phys; 2009 May 28; 130(20):204515. PubMed ID: 19485465 [Abstract] [Full Text] [Related]
14. Glass transition dynamics and boiling temperatures of molecular liquids and their isomers. Wang LM, Richert R. J Phys Chem B; 2007 Mar 29; 111(12):3201-7. PubMed ID: 17388430 [Abstract] [Full Text] [Related]
15. Fragility and thermodynamics in nonpolymeric glass-forming liquids. Wang LM, Angell CA, Richert R. J Chem Phys; 2006 Aug 21; 125(7):074505. PubMed ID: 16942349 [Abstract] [Full Text] [Related]
16. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Sastry S. Nature; 2001 Jan 11; 409(6817):164-7. PubMed ID: 11196634 [Abstract] [Full Text] [Related]
17. Two-Gaussian excitations model for the glass transition. Matyushov DV, Angell CA. J Chem Phys; 2005 Jul 15; 123(3):34506. PubMed ID: 16080743 [Abstract] [Full Text] [Related]
18. Correlation between glass-forming ability and fragility of pharmaceutical compounds. Kawakami K, Harada T, Yoshihashi Y, Yonemochi E, Terada K, Moriyama H. J Phys Chem B; 2015 Apr 09; 119(14):4873-80. PubMed ID: 25781503 [Abstract] [Full Text] [Related]
19. Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids. Mauro JC, Gupta PK, Loucks RJ. J Chem Phys; 2009 Jun 21; 130(23):234503. PubMed ID: 19548735 [Abstract] [Full Text] [Related]
20. An upper limit to kinetic fragility in glass-forming liquids. Wang LM, Mauro JC. J Chem Phys; 2011 Jan 28; 134(4):044522. PubMed ID: 21280763 [Abstract] [Full Text] [Related] Page: [Next] [New Search]