These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


241 related items for PubMed ID: 17065251

  • 1. FMRI adaptation reveals separate mechanisms for first-order and second-order motion.
    Ashida H, Lingnau A, Wall MB, Smith AT.
    J Neurophysiol; 2007 Feb; 97(2):1319-25. PubMed ID: 17065251
    [Abstract] [Full Text] [Related]

  • 2. Neuroimaging of direction-selective mechanisms for second-order motion.
    Nishida S, Sasaki Y, Murakami I, Watanabe T, Tootell RB.
    J Neurophysiol; 2003 Nov; 90(5):3242-54. PubMed ID: 12917391
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Orientation-tuned FMRI adaptation in human visual cortex.
    Fang F, Murray SO, Kersten D, He S.
    J Neurophysiol; 2005 Dec; 94(6):4188-95. PubMed ID: 16120668
    [Abstract] [Full Text] [Related]

  • 5. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging.
    Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR.
    Nature; 1995 May 11; 375(6527):139-41. PubMed ID: 7753168
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation.
    Wall MB, Lingnau A, Ashida H, Smith AT.
    Eur J Neurosci; 2008 May 11; 27(10):2747-57. PubMed ID: 18547254
    [Abstract] [Full Text] [Related]

  • 9. Separate processing of different global-motion structures in visual cortex is revealed by FMRI.
    Koyama S, Sasaki Y, Andersen GJ, Tootell RB, Matsuura M, Watanabe T.
    Curr Biol; 2005 Nov 22; 15(22):2027-32. PubMed ID: 16303562
    [Abstract] [Full Text] [Related]

  • 10. Differential dependency on motion coherence in subregions of the human MT+ complex.
    Becker HG, Erb M, Haarmeier T.
    Eur J Neurosci; 2008 Oct 22; 28(8):1674-85. PubMed ID: 18973585
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Role of the superior temporal region in human visual motion perception.
    Noguchi Y, Kaneoke Y, Kakigi R, Tanabe HC, Sadato N.
    Cereb Cortex; 2005 Oct 22; 15(10):1592-601. PubMed ID: 15703258
    [Abstract] [Full Text] [Related]

  • 13. Representation of motion boundaries in retinotopic human visual cortical areas.
    Reppas JB, Niyogi S, Dale AM, Sereno MI, Tootell RB.
    Nature; 1997 Jul 10; 388(6638):175-9. PubMed ID: 9217157
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Dorsal stream development in motion and structure-from-motion perception.
    Klaver P, Lichtensteiger J, Bucher K, Dietrich T, Loenneker T, Martin E.
    Neuroimage; 2008 Feb 15; 39(4):1815-23. PubMed ID: 18096410
    [Abstract] [Full Text] [Related]

  • 16. Processing of first-order motion in marmoset visual cortex is influenced by second-order motion.
    Barraclough N, Tinsley C, Webb B, Vincent C, Derrington A.
    Vis Neurosci; 2006 Feb 15; 23(5):815-24. PubMed ID: 17020636
    [Abstract] [Full Text] [Related]

  • 17. Testing the validity of the TMS state-dependency approach: targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and V5/MT+.
    Silvanto J, Muggleton NG.
    Neuroimage; 2008 May 01; 40(4):1841-8. PubMed ID: 18353682
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.