These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


932 related items for PubMed ID: 17071088

  • 1. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S, Gutierrez-Farewik EM.
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [Abstract] [Full Text] [Related]

  • 2. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA, Perry J, Gitter AJ.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC, Walter JP, Banks SA, Pandy MG, Fregly BJ.
    J Biomech; 2010 Mar 22; 43(5):945-52. PubMed ID: 19962703
    [Abstract] [Full Text] [Related]

  • 5. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH, Rozendaal LA, Meskers CG, Arwert HJ.
    Clin Biomech (Bristol, Avon); 2004 Oct 22; 19(8):790-800. PubMed ID: 15342151
    [Abstract] [Full Text] [Related]

  • 6. Less is more: high pass filtering, to remove up to 99% of the surface EMG signal power, improves EMG-based biceps brachii muscle force estimates.
    Potvin JR, Brown SH.
    J Electromyogr Kinesiol; 2004 Jun 22; 14(3):389-99. PubMed ID: 15094152
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A two-step EMG-and-optimization process to estimate muscle force during dynamic movement.
    Amarantini D, Rao G, Berton E.
    J Biomech; 2010 Jun 18; 43(9):1827-30. PubMed ID: 20206935
    [Abstract] [Full Text] [Related]

  • 9. Effects of mass and momentum of inertia alternation on individual muscle forces during swing phase of transtibial amputee gait.
    Dabiri Y, Najarian S, Eslami MR, Zahedi S, Moser D, Shirzad E, Allami M.
    Kobe J Med Sci; 2010 Sep 30; 56(3):E92-7. PubMed ID: 21063155
    [Abstract] [Full Text] [Related]

  • 10. Evaluation of the influence of muscle deactivation on other muscles and joints during gait motion.
    Komura T, Prokopow P, Nagano A.
    J Biomech; 2004 Apr 30; 37(4):425-36. PubMed ID: 14996554
    [Abstract] [Full Text] [Related]

  • 11. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F, Lamas M, Lugrís U, Cuadrado J.
    J Neuroeng Rehabil; 2021 Jan 28; 18(1):17. PubMed ID: 33509205
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L, Jia X, Wang R.
    Clin Biomech (Bristol, Avon); 2007 Dec 28; 22(10):1125-31. PubMed ID: 17942203
    [Abstract] [Full Text] [Related]

  • 14. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F, Dumas R, Cheze L, Wang X.
    J Biomech; 2009 Oct 16; 42(14):2357-62. PubMed ID: 19699479
    [Abstract] [Full Text] [Related]

  • 15. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
    Thelen DG, Anderson FC.
    J Biomech; 2006 Oct 16; 39(6):1107-15. PubMed ID: 16023125
    [Abstract] [Full Text] [Related]

  • 16. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N, Gagnon D, Plamondon A, Shirazi-Adl A, Larivière C.
    Clin Biomech (Bristol, Avon); 2009 Aug 16; 24(7):533-41. PubMed ID: 19493597
    [Abstract] [Full Text] [Related]

  • 17. The effects of electromyography-assisted modelling in estimating musculotendon forces during gait in children with cerebral palsy.
    Veerkamp K, Schallig W, Harlaar J, Pizzolato C, Carty CP, Lloyd DG, van der Krogt MM.
    J Biomech; 2019 Jul 19; 92():45-53. PubMed ID: 31153626
    [Abstract] [Full Text] [Related]

  • 18. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
    Seth A, Pandy MG.
    J Biomech; 2007 Jul 19; 40(2):356-66. PubMed ID: 16513124
    [Abstract] [Full Text] [Related]

  • 19. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR, Sasaki K.
    J Exp Biol; 2005 Mar 19; 208(Pt 5):799-808. PubMed ID: 15755878
    [Abstract] [Full Text] [Related]

  • 20. A musculoskeletal foot model for clinical gait analysis.
    Saraswat P, Andersen MS, Macwilliams BA.
    J Biomech; 2010 Jun 18; 43(9):1645-52. PubMed ID: 20385385
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 47.