These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


371 related items for PubMed ID: 17071244

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ, Kwon K, Im CH.
    J Neurosci Methods; 2009 Apr 30; 179(1):150-6. PubMed ID: 19428521
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns.
    Wang T, Deng J, He B.
    Clin Neurophysiol; 2004 Dec 30; 115(12):2744-53. PubMed ID: 15546783
    [Abstract] [Full Text] [Related]

  • 8. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks.
    Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH.
    Neuroimage; 2006 May 15; 31(1):153-9. PubMed ID: 16443377
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G, Graimann B, Pfurtscheller G.
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun 15; 12(2):258-65. PubMed ID: 15218939
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Rapid prototyping of an EEG-based brain-computer interface (BCI).
    Guger C, Schlögl A, Neuper C, Walterspacher D, Strein T, Pfurtscheller G.
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar 15; 9(1):49-58. PubMed ID: 11482363
    [Abstract] [Full Text] [Related]

  • 13. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ, Rosipal R, Matthews B.
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun 15; 14(2):225-9. PubMed ID: 16792300
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. [Discrimination between left and right hand movement imagery event-releated EEG pattern].
    Zhu Q, Wang M.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec 15; 21(6):1031-4. PubMed ID: 15646359
    [Abstract] [Full Text] [Related]

  • 16. Could the beta rebound in the EEG be suitable to realize a "brain switch"?
    Pfurtscheller G, Solis-Escalante T.
    Clin Neurophysiol; 2009 Jan 15; 120(1):24-9. PubMed ID: 19028138
    [Abstract] [Full Text] [Related]

  • 17. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components.
    Pfurtscheller G, Flotzinger D, Pregenzer M, Wolpaw JR, McFarland D.
    Med Prog Technol; 2009 Jan 15; 21(3):111-21. PubMed ID: 8776708
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Graz-BCI: state of the art and clinical applications.
    Pfurtscheller G, Neuper C, Müller GR, Obermaier B, Krausz G, Schlögl A, Scherer R, Graimann B, Keinrath C, Skliris D, Wörtz M, Supp G, Schrank C.
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun 15; 11(2):177-80. PubMed ID: 12899267
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.