These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part III. Paranodal internodal demyelination. Stephanova DI, Daskalova M. Clin Neurophysiol; 2005 Oct; 116(10):2334-41. PubMed ID: 16122981 [Abstract] [Full Text] [Related]
4. Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part II. Paranodal demyelination. Stephanova DI, Daskalova M. Clin Neurophysiol; 2005 May; 116(5):1159-66. PubMed ID: 15826857 [Abstract] [Full Text] [Related]
5. Excitability properties of normal and demyelinated human motor nerve axons. Stephanova DI, Daskalova M. Electromyogr Clin Neurophysiol; 2004 May; 44(3):147-52. PubMed ID: 15125054 [Abstract] [Full Text] [Related]
6. Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part I. Stephanova DI, Daskalova M, Alexandrov AS. Clin Neurophysiol; 2005 May; 116(5):1153-8. PubMed ID: 15826856 [Abstract] [Full Text] [Related]
7. Channels, currents and mechanisms of accommodative processes in simulated cases of systematic demyelinating neuropathies. Stephanova DI, Daskalova M, Alexandrov AS. Brain Res; 2007 Sep 26; 1171():138-51. PubMed ID: 17706617 [Abstract] [Full Text] [Related]
8. Membrane property abnormalities in simulated cases of mild systematic and severe focal demyelinating neuropathies. Stephanova D, Daskalova M. Eur Biophys J; 2008 Feb 26; 37(2):183-95. PubMed ID: 17786424 [Abstract] [Full Text] [Related]
9. Conduction in bundles of demyelinated nerve fibers: computer simulation. Reutskiy S, Rossoni E, Tirozzi B. Biol Cybern; 2003 Dec 26; 89(6):439-48. PubMed ID: 14673655 [Abstract] [Full Text] [Related]
10. Differences in membrane properties in simulated cases of demyelinating neuropathies: internodal focal demyelinations with conduction block. Stephanova DI, Daskalova MS, Alexandrov AS. J Biol Phys; 2006 Oct 26; 32(2):129-44. PubMed ID: 19669456 [Abstract] [Full Text] [Related]
15. The myelin sheath aqueous layers improve the membrane properties of simulated chronic demyelinating neuropathies. Stephanova DI, Krustev SM, Negrev N, Daskalova M. J Integr Neurosci; 2011 Mar 26; 10(1):105-20. PubMed ID: 21425485 [Abstract] [Full Text] [Related]
16. The aqueous layers within the myelin sheath modulate the membrane properties of simulated hereditary demyelinating neuropathies. Stephanova DI, Krustev SM, Daskalova M. J Integr Neurosci; 2011 Mar 26; 10(1):89-103. PubMed ID: 21425484 [Abstract] [Full Text] [Related]
17. Freeze-fracture approaches to ionophore localization in normal and myelin-deficient nerves. Rosenbluth J. Adv Neurol; 1981 Mar 26; 31():391-418. PubMed ID: 7325047 [Abstract] [Full Text] [Related]
18. Sensitivity of conventional motor nerve conduction examination in detecting patchy demyelination: a simulated model. Caliandro P, Stålberg E, La Torre G, Padua L. Clin Neurophysiol; 2007 Jul 26; 118(7):1577-85. PubMed ID: 17524765 [Abstract] [Full Text] [Related]
19. Internodal conduction in undissected demyelinated nerve fibres. Rasminsky M, Sears TA. J Physiol; 1972 Dec 26; 227(2):323-50. PubMed ID: 4647244 [Abstract] [Full Text] [Related]
20. A computer simulation of conduction in demyelinated nerve fibres. Koles ZJ, Rasminsky M. J Physiol; 1972 Dec 26; 227(2):351-64. PubMed ID: 4675037 [Abstract] [Full Text] [Related] Page: [Next] [New Search]