These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
312 related items for PubMed ID: 17073324
1. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties. Taddei F, Martelli S, Reggiani B, Cristofolini L, Viceconti M. IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324 [Abstract] [Full Text] [Related]
2. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. Bourne BC, van der Meulen MC. J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990 [Abstract] [Full Text] [Related]
3. Constructing anisotropic finite element model of bone from computed tomography (CT). Kazembakhshi S, Luo Y. Biomed Mater Eng; 2014 May; 24(6):2619-26. PubMed ID: 25226965 [Abstract] [Full Text] [Related]
4. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M, Zdero R, Schemitsch EH, Zalzal P. J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [Abstract] [Full Text] [Related]
5. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Taddei F, Schileo E, Helgason B, Cristofolini L, Viceconti M. Med Eng Phys; 2007 Nov; 29(9):973-9. PubMed ID: 17169598 [Abstract] [Full Text] [Related]
6. Prediction of strength and strain of the proximal femur by a CT-based finite element method. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. J Biomech; 2007 Nov; 40(8):1745-53. PubMed ID: 17034798 [Abstract] [Full Text] [Related]
11. Statistical finite element model for bone shape and biomechanical properties. Belenguer Querol L, Büchler P, Rueckert D, Nolte LP, González Ballester MA. Med Image Comput Comput Assist Interv; 2006 Apr 29; 9(Pt 1):405-11. PubMed ID: 17354916 [Abstract] [Full Text] [Related]
12. Prediction of mechanical properties of cortical bone by quantitative computed tomography. Duchemin L, Bousson V, Raossanaly C, Bergot C, Laredo JD, Skalli W, Mitton D. Med Eng Phys; 2008 Apr 29; 30(3):321-8. PubMed ID: 17596993 [Abstract] [Full Text] [Related]
13. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. Anderson AE, Peters CL, Tuttle BD, Weiss JA. J Biomech Eng; 2005 Jun 29; 127(3):364-73. PubMed ID: 16060343 [Abstract] [Full Text] [Related]
14. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set. Shim VB, Pitto RP, Streicher RM, Hunter PJ, Anderson IA. J Biomech Eng; 2008 Oct 29; 130(5):051010. PubMed ID: 19045517 [Abstract] [Full Text] [Related]
16. Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density. Pisharody S, Phillips R, Langton CM. Proc Inst Mech Eng H; 2008 Apr 29; 222(3):367-75. PubMed ID: 18491705 [Abstract] [Full Text] [Related]
17. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. Zauel R, Yeni YN, Bay BK, Dong XN, Fyhrie DP. J Biomech Eng; 2006 Feb 29; 128(1):1-6. PubMed ID: 16532610 [Abstract] [Full Text] [Related]
20. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation. Seo JW, Kang DW, Kim JY, Yang ST, Kim DH, Choi JS, Tack GR. Biomed Mater Eng; 2014 Feb 29; 24(6):2485-93. PubMed ID: 25226949 [Abstract] [Full Text] [Related] Page: [Next] [New Search]