These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


298 related items for PubMed ID: 17078569

  • 1. Prediction of the concentration of chlorophyll-a for Liuhai urban lakes in Beijing City.
    Zeng Y, Yang ZF, Liu JL.
    J Environ Sci (China); 2006; 18(4):827-31. PubMed ID: 17078569
    [Abstract] [Full Text] [Related]

  • 2. Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data-a case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake.
    Xu M, Zeng GM, Xu XY, Huang GH, Sun W, Jiang XY.
    J Environ Sci (China); 2005; 17(6):946-52. PubMed ID: 16465884
    [Abstract] [Full Text] [Related]

  • 3. [Establishment of the predictive model of source eutrophication using artificial neural network].
    Yang S, Zhang H, Ba Y, Cheng X.
    Wei Sheng Yan Jiu; 2008 Sep; 37(5):543-5. PubMed ID: 19069648
    [Abstract] [Full Text] [Related]

  • 4. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea.
    Park Y, Cho KH, Park J, Cha SM, Kim JH.
    Sci Total Environ; 2015 Jan 01; 502():31-41. PubMed ID: 25241206
    [Abstract] [Full Text] [Related]

  • 5. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes.
    Arulsudar N, Subramanian N, Muthy RS.
    J Pharm Pharm Sci; 2005 Aug 05; 8(2):243-58. PubMed ID: 16124936
    [Abstract] [Full Text] [Related]

  • 6. Application of artificial neural networks to assess pesticide contamination in shallow groundwater.
    Sahoo GB, Ray C, Mehnert E, Keefer DA.
    Sci Total Environ; 2006 Aug 15; 367(1):234-51. PubMed ID: 16460784
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China.
    Liu Y, Xi DG, Li ZL.
    PLoS One; 2015 Aug 15; 10(3):e0119082. PubMed ID: 25768650
    [Abstract] [Full Text] [Related]

  • 11. An ANN application for water quality forecasting.
    Palani S, Liong SY, Tkalich P.
    Mar Pollut Bull; 2008 Sep 15; 56(9):1586-97. PubMed ID: 18635240
    [Abstract] [Full Text] [Related]

  • 12. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes.
    Vos RJ, Hakvoort JH, Jordans RW, Ibelings BW.
    Sci Total Environ; 2003 Aug 01; 312(1-3):221-43. PubMed ID: 12873412
    [Abstract] [Full Text] [Related]

  • 13. Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction.
    Noori R, Karbassi A, Salman Sabahi M.
    J Environ Manage; 2010 Aug 01; 91(3):767-71. PubMed ID: 19913989
    [Abstract] [Full Text] [Related]

  • 14. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique.
    Dogan E, Sengorur B, Koklu R.
    J Environ Manage; 2009 Feb 01; 90(2):1229-35. PubMed ID: 18691805
    [Abstract] [Full Text] [Related]

  • 15. Linear and nonlinear modeling approaches for urban air quality prediction.
    Singh KP, Gupta S, Kumar A, Shukla SP.
    Sci Total Environ; 2012 Jun 01; 426():244-55. PubMed ID: 22542239
    [Abstract] [Full Text] [Related]

  • 16. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process.
    Elmolla ES, Chaudhuri M, Eltoukhy MM.
    J Hazard Mater; 2010 Jul 15; 179(1-3):127-34. PubMed ID: 20307930
    [Abstract] [Full Text] [Related]

  • 17. Long term changes in the eutrophication process in a shallow Mediterranean lake ecosystem of W. Greece: response after the reduction of external load.
    Kagalou I, Papastergiadou E, Leonardos I.
    J Environ Manage; 2008 May 15; 87(3):497-506. PubMed ID: 17383796
    [Abstract] [Full Text] [Related]

  • 18. Predicting conductance due to upconing using neural networks.
    Coppola EA, McLane CF, Poulton MM, Szidarovszky F, Magelky RD.
    Ground Water; 2005 May 15; 43(6):827-36. PubMed ID: 16324004
    [Abstract] [Full Text] [Related]

  • 19. Estimating monthly total nitrogen concentration in streams by using artificial neural network.
    He B, Oki T, Sun F, Komori D, Kanae S, Wang Y, Kim H, Yamazaki D.
    J Environ Manage; 2011 Jan 15; 92(1):172-7. PubMed ID: 20870340
    [Abstract] [Full Text] [Related]

  • 20. Artificial neural network model for earthquake prediction with radon monitoring.
    Külahci F, Inceöz M, Doğru M, Aksoy E, Baykara O.
    Appl Radiat Isot; 2009 Jan 15; 67(1):212-9. PubMed ID: 18789709
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.