These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 17083122

  • 1. Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood.
    Krimm RF.
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Dec; 288(12):1294-302. PubMed ID: 17083122
    [Abstract] [Full Text] [Related]

  • 2. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs.
    Mistretta CM, Goosens KA, Farinas I, Reichardt LF.
    J Comp Neurol; 1999 Jun 21; 409(1):13-24. PubMed ID: 10363708
    [Abstract] [Full Text] [Related]

  • 3. The neurotrophin receptor p75 regulates gustatory axon branching and promotes innervation of the tongue during development.
    Fei D, Huang T, Krimm RF.
    Neural Dev; 2014 Jun 24; 9():15. PubMed ID: 24961238
    [Abstract] [Full Text] [Related]

  • 4. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue.
    Krimm RF, Miller KK, Kitzman PH, Davis BM, Albers KM.
    Dev Biol; 2001 Apr 15; 232(2):508-21. PubMed ID: 11401409
    [Abstract] [Full Text] [Related]

  • 5. Innervation of single fungiform taste buds during development in rat.
    Krimm RF, Hill DL.
    J Comp Neurol; 1998 Aug 17; 398(1):13-24. PubMed ID: 9703025
    [Abstract] [Full Text] [Related]

  • 6. Each sensory nerve arising from the geniculate ganglion expresses a unique fingerprint of neurotrophin and neurotrophin receptor genes.
    Farbman AI, Guagliardo N, Sollars SI, Hill DL.
    J Neurosci Res; 2004 Dec 01; 78(5):659-67. PubMed ID: 15495212
    [Abstract] [Full Text] [Related]

  • 7. Support of trigeminal sensory neurons by nonneuronal p75 neurotrophin receptors.
    Fan L, Girnius S, Oakley B.
    Brain Res Dev Brain Res; 2004 May 19; 150(1):23-39. PubMed ID: 15126035
    [Abstract] [Full Text] [Related]

  • 8. Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds.
    Fritzsch B, Sarai PA, Barbacid M, Silos-Santiago I.
    Int J Dev Neurosci; 1997 Jul 19; 15(4-5):563-76. PubMed ID: 9263033
    [Abstract] [Full Text] [Related]

  • 9. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation.
    Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC.
    J Comp Neurol; 2003 Jan 01; 455(1):25-39. PubMed ID: 12454994
    [Abstract] [Full Text] [Related]

  • 10. Embryonic geniculate ganglion neurons in culture have neurotrophin-specific electrophysiological properties.
    Al-Hadlaq SM, Bradley RM, MacCallum DK, Mistretta CM.
    Neuroscience; 2003 Jan 01; 118(1):145-59. PubMed ID: 12676146
    [Abstract] [Full Text] [Related]

  • 11. The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion.
    Ohman-Gault L, Huang T, Krimm R.
    J Comp Neurol; 2017 Dec 15; 525(18):3935-3950. PubMed ID: 28856690
    [Abstract] [Full Text] [Related]

  • 12. Taste neurons consist of both a large TrkB-receptor-dependent and a small TrkB-receptor-independent subpopulation.
    Fei D, Krimm RF.
    PLoS One; 2013 Dec 15; 8(12):e83460. PubMed ID: 24386206
    [Abstract] [Full Text] [Related]

  • 13. Expression of BDNF and TrkB in mouse taste buds after denervation and in circumvallate papillae during development.
    Uchida N, Kanazawa M, Suzuki Y, Takeda M.
    Arch Histol Cytol; 2003 Mar 15; 66(1):17-25. PubMed ID: 12703550
    [Abstract] [Full Text] [Related]

  • 14. Cell non-autonomous requirement of p75 in the development of geniculate oral sensory neurons.
    Tang T, Donnelly CR, Shah AA, Bradley RM, Mistretta CM, Pierchala BA.
    Sci Rep; 2020 Dec 17; 10(1):22117. PubMed ID: 33335119
    [Abstract] [Full Text] [Related]

  • 15. Organization of geniculate and trigeminal ganglion cells innervating single fungiform taste papillae: a study with tetramethylrhodamine dextran amine labeling.
    Whitehead MC, Ganchrow JR, Ganchrow D, Yao B.
    Neuroscience; 1999 Dec 17; 93(3):931-41. PubMed ID: 10473258
    [Abstract] [Full Text] [Related]

  • 16. Neuron/target matching between chorda tympani neurons and taste buds during postnatal rat development.
    Krimm RF, Hill DL.
    J Neurobiol; 2000 Apr 17; 43(1):98-106. PubMed ID: 10756070
    [Abstract] [Full Text] [Related]

  • 17. Discrete innervation of murine taste buds by peripheral taste neurons.
    Zaidi FN, Whitehead MC.
    J Neurosci; 2006 Aug 09; 26(32):8243-53. PubMed ID: 16899719
    [Abstract] [Full Text] [Related]

  • 18. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster.
    Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC.
    J Comp Neurol; 2003 Jan 01; 455(1):11-24. PubMed ID: 12454993
    [Abstract] [Full Text] [Related]

  • 19. Exuberant neuronal convergence onto reduced taste bud targets with preservation of neural specificity in mice overexpressing neurotrophin in the tongue epithelium.
    Zaidi FN, Krimm RF, Whitehead MC.
    J Neurosci; 2007 Dec 12; 27(50):13875-81. PubMed ID: 18077699
    [Abstract] [Full Text] [Related]

  • 20. Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents.
    Patel AV, Huang T, Krimm RF.
    J Comp Neurol; 2010 Aug 15; 518(16):3290-301. PubMed ID: 20575060
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.