These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
261 related items for PubMed ID: 17090542
1. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. Basha E, Friedrich KL, Vierling E. J Biol Chem; 2006 Dec 29; 281(52):39943-52. PubMed ID: 17090542 [Abstract] [Full Text] [Related]
2. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. Lee GJ, Roseman AM, Saibil HR, Vierling E. EMBO J; 1997 Feb 03; 16(3):659-71. PubMed ID: 9034347 [Abstract] [Full Text] [Related]
3. Substrate binding site flexibility of the small heat shock protein molecular chaperones. Jaya N, Garcia V, Vierling E. Proc Natl Acad Sci U S A; 2009 Sep 15; 106(37):15604-9. PubMed ID: 19717454 [Abstract] [Full Text] [Related]
4. Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry. Cheng G, Basha E, Wysocki VH, Vierling E. J Biol Chem; 2008 Sep 26; 283(39):26634-42. PubMed ID: 18621732 [Abstract] [Full Text] [Related]
5. Chaperone activity of cytosolic small heat shock proteins from wheat. Basha E, Lee GJ, Demeler B, Vierling E. Eur J Biochem; 2004 Apr 26; 271(8):1426-36. PubMed ID: 15066169 [Abstract] [Full Text] [Related]
6. Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays. Lentze N, Narberhaus F. Biochem Biophys Res Commun; 2004 Dec 10; 325(2):401-7. PubMed ID: 15530406 [Abstract] [Full Text] [Related]
8. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. Friedrich KL, Giese KC, Buan NR, Vierling E. J Biol Chem; 2004 Jan 09; 279(2):1080-9. PubMed ID: 14573605 [Abstract] [Full Text] [Related]
9. Wrapping the alpha-crystallin domain fold in a chaperone assembly. Stamler R, Kappé G, Boelens W, Slingsby C. J Mol Biol; 2005 Oct 14; 353(1):68-79. PubMed ID: 16165157 [Abstract] [Full Text] [Related]
11. Replica exchange molecular dynamics simulations provide insight into substrate recognition by small heat shock proteins. Patel S, Vierling E, Tama F. Biophys J; 2014 Jun 17; 106(12):2644-55. PubMed ID: 24940782 [Abstract] [Full Text] [Related]
15. NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Carver JA, Lindner RA. Int J Biol Macromol; 1998 Jun 17; 22(3-4):197-209. PubMed ID: 9650074 [Abstract] [Full Text] [Related]
16. Crystal structure and assembly of a eukaryotic small heat shock protein. van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E. Nat Struct Biol; 2001 Dec 17; 8(12):1025-30. PubMed ID: 11702068 [Abstract] [Full Text] [Related]
18. Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Giese KC, Basha E, Catague BY, Vierling E. Proc Natl Acad Sci U S A; 2005 Dec 27; 102(52):18896-901. PubMed ID: 16365319 [Abstract] [Full Text] [Related]
20. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E. J Biol Chem; 2004 Feb 27; 279(9):7566-75. PubMed ID: 14662763 [Abstract] [Full Text] [Related] Page: [Next] [New Search]