These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 17091840

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Estimation of velocity vectors in synthetic aperture ultrasound imaging.
    Jensen JA, Oddershede N.
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1637-44. PubMed ID: 17167998
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Investigation of transverse oscillation method.
    Udesen J, Jensen JA.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):959-71. PubMed ID: 16764450
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Directional velocity estimation using focusing along the flow direction. II: Experimental investigation.
    Jensen JA, Bjerngaard R.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):873-80. PubMed ID: 12894920
    [Abstract] [Full Text] [Related]

  • 9. Vector-velocity estimation in swept-scan using a K-space approach.
    Jeng GS, Li PC.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):947-58. PubMed ID: 16764449
    [Abstract] [Full Text] [Related]

  • 10. Coded ultrasound for blood flow estimation using subband processing.
    Gran F, Udesen J, Nielsen MB, Jensen JA.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2211-20. PubMed ID: 18986869
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Directional velocity estimation using focusing along the flow direction. I: Theory and simulation.
    Jensen JA.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):857-72. PubMed ID: 12894919
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. In-vivo synthetic aperture flow imaging in medical ultrasound.
    Nikolov SI, Jensen JA.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):848-56. PubMed ID: 12894918
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Quantitative real-time blood flow estimation with intravascular ultrasound in the presence of in-plane flow.
    de Ana FJ, O'Donnell M.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1952-61. PubMed ID: 16422407
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Microcirculation volumetric flow assessment using high-resolution, contrast-assisted images.
    Yeh CK, Lu SY, Chen YS.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):74-83. PubMed ID: 18334315
    [Abstract] [Full Text] [Related]

  • 20. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A, Degroote J, Vierendeels J, Lovstakken L, Segers P.
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.