These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 17098423

  • 1. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure.
    Koutcheiko S, Monreal CM, Kodama H, McCracken T, Kotlyar L.
    Bioresour Technol; 2007 Sep; 98(13):2459-64. PubMed ID: 17098423
    [Abstract] [Full Text] [Related]

  • 2. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization.
    Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LE, Ayucitra A.
    Bioresour Technol; 2005 Aug; 96(12):1364-9. PubMed ID: 15792584
    [Abstract] [Full Text] [Related]

  • 3. The conversion of chicken manure to bio-oil by fast pyrolysis. III. Analyses of chicken manure, bio-oils and char by Py-FIMS and Py-FDMS.
    Schnitzer MI, Monreal CM, Jandl G.
    J Environ Sci Health B; 2008 Jan; 43(1):81-95. PubMed ID: 18161578
    [Abstract] [Full Text] [Related]

  • 4. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.
    Tseng RL.
    J Hazard Mater; 2007 Aug 25; 147(3):1020-7. PubMed ID: 17363154
    [Abstract] [Full Text] [Related]

  • 5. Preparation of carbon black from rice husk by hydrolysis, carbonization and pyrolysis.
    Wang L, Wang X, Zou B, Ma X, Qu Y, Rong C, Li Y, Su Y, Wang Z.
    Bioresour Technol; 2011 Sep 25; 102(17):8220-4. PubMed ID: 21745737
    [Abstract] [Full Text] [Related]

  • 6. Preparation of highly porous carbon from fir wood by KOH etching and CO2 gasification for adsorption of dyes and phenols from water.
    Wu FC, Tseng RL.
    J Colloid Interface Sci; 2006 Feb 01; 294(1):21-30. PubMed ID: 16111690
    [Abstract] [Full Text] [Related]

  • 7. The conversion of chicken manure to biooil by fast pyrolysis II. Analysis of chicken manure, biooils, and char by curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS).
    Schnitzer MI, Monreal CM, Jandl G, Leinweber P, Fransham PB.
    J Environ Sci Health B; 2007 Jan 01; 42(1):79-95. PubMed ID: 17162571
    [Abstract] [Full Text] [Related]

  • 8. Influence of manure types and pyrolysis conditions on the oxidation behavior of manure char.
    Zhang SY, Hong RY, Cao JP, Takarada T.
    Bioresour Technol; 2009 Sep 01; 100(18):4278-83. PubMed ID: 19423338
    [Abstract] [Full Text] [Related]

  • 9. Mesopore control of high surface area NaOH-activated carbon.
    Tseng RL.
    J Colloid Interface Sci; 2006 Nov 15; 303(2):494-502. PubMed ID: 16997316
    [Abstract] [Full Text] [Related]

  • 10. Preparation of activated carbons from cattle-manure compost by zinc chloride activation.
    Qian Q, Machida M, Tatsumoto H.
    Bioresour Technol; 2007 Jan 15; 98(2):353-60. PubMed ID: 16527480
    [Abstract] [Full Text] [Related]

  • 11. The conversion of chicken manure to biooil by fast pyrolysis I. Analyses of chicken manure, biooils and char by 13C and 1H NMR and FTIR spectrophotometry.
    Schnitzer MI, Monreal CM, Facey GA, Fransham PB.
    J Environ Sci Health B; 2007 Jan 15; 42(1):71-7. PubMed ID: 17162570
    [Abstract] [Full Text] [Related]

  • 12. Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation.
    Okada K, Yamamoto N, Kameshima Y, Yasumori A.
    J Colloid Interface Sci; 2003 Jun 01; 262(1):179-93. PubMed ID: 16256594
    [Abstract] [Full Text] [Related]

  • 13. Preparation and characterization of activated carbon from a new raw lignocellulosic material: flamboyant (Delonix regia) pods.
    Vargas AM, Cazetta AL, Garcia CA, Moraes JC, Nogami EM, Lenzi E, Costa WF, Almeida VC.
    J Environ Manage; 2011 Jan 01; 92(1):178-84. PubMed ID: 20869158
    [Abstract] [Full Text] [Related]

  • 14. Steam activation of chars produced from oat hulls and corn stover.
    Fan M, Marshall W, Daugaard D, Brown RC.
    Bioresour Technol; 2004 May 01; 93(1):103-7. PubMed ID: 14987728
    [Abstract] [Full Text] [Related]

  • 15. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.
    Ma Y, Niu R, Wang X, Wang Q, Wang X, Sun X.
    Waste Manag Res; 2014 Nov 01; 32(11):1123-33. PubMed ID: 25378256
    [Abstract] [Full Text] [Related]

  • 16. Effects of Burn-off and Activation Temperature on Preparation of Activated Carbon from Corn Cob Agrowaste by CO(2) and Steam.
    Chang CF, Chang CY, Tsai WT.
    J Colloid Interface Sci; 2000 Dec 01; 232(1):45-49. PubMed ID: 11071731
    [Abstract] [Full Text] [Related]

  • 17. Production of activated carbon by waste tire thermochemical degradation with CO2.
    Betancur M, Martínez JD, Murillo R.
    J Hazard Mater; 2009 Sep 15; 168(2-3):882-7. PubMed ID: 19398156
    [Abstract] [Full Text] [Related]

  • 18. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes.
    Steiner SA, Baumann TF, Kong J, Satcher JH, Dresselhaus MS.
    Langmuir; 2007 Apr 24; 23(9):5161-6. PubMed ID: 17381146
    [Abstract] [Full Text] [Related]

  • 19. Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane.
    Hayashi J, Yamamoto N, Horikawa T, Muroyama K, Gomes VG.
    J Colloid Interface Sci; 2005 Jan 15; 281(2):437-43. PubMed ID: 15571700
    [Abstract] [Full Text] [Related]

  • 20. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3.
    Adinata D, Wan Daud WM, Aroua MK.
    Bioresour Technol; 2007 Jan 15; 98(1):145-9. PubMed ID: 16380249
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.