These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Effects of elevated ozone on photosynthetic CO2 exchange and chlorophyll a fluorescence in leaves of Quercus mongolica grown in urban area. Wang L, He X, Chen W. Bull Environ Contam Toxicol; 2009 Apr; 82(4):478-81. PubMed ID: 19011725 [Abstract] [Full Text] [Related]
7. Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach. Gielen B, Löw M, Deckmyn G, Metzger U, Franck F, Heerdt C, Matyssek R, Valcke R, Ceulemans R. J Exp Bot; 2007 Apr; 58(4):785-95. PubMed ID: 17150989 [Abstract] [Full Text] [Related]
8. Non-photochemical loss in PSII in high- and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including L(NP), F0/F'm, a novel parameter. Stefanov D, Terashima I. Physiol Plant; 2008 Jun; 133(2):327-38. PubMed ID: 18346081 [Abstract] [Full Text] [Related]
10. The impact of blue light on leaf mesophyll conductance. Loreto F, Tsonev T, Centritto M. J Exp Bot; 2009 Jun; 60(8):2283-90. PubMed ID: 19395388 [Abstract] [Full Text] [Related]
11. Rapid chlorophyll a fluorescence transient of Lemna gibba leaf as an indication of light and hydroxylamine effect on photosystem II activity. Dewez D, Ali NA, Perreault F, Popovic R. Photochem Photobiol Sci; 2007 May; 6(5):532-8. PubMed ID: 17487305 [Abstract] [Full Text] [Related]
12. Chlorophyll a fluorescence imaging of ozone-stressed Brassica napus L. plants differing in glucosinolate concentrations. Gielen B, Vandermeiren K, Horemans N, D'Haese D, Serneels R, Valcke R. Plant Biol (Stuttg); 2006 Sep; 8(5):698-705. PubMed ID: 16821192 [Abstract] [Full Text] [Related]
14. Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves. Bagard M, Le Thiec D, Delacote E, Hasenfratz-Sauder MP, Banvoy J, Gérard J, Dizengremel P, Jolivet Y. Physiol Plant; 2008 Dec; 134(4):559-74. PubMed ID: 18823329 [Abstract] [Full Text] [Related]
16. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Yin X, Struik PC, Romero P, Harbinson J, Evers JB, VAN DER Putten PE, Vos J. Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300 [Abstract] [Full Text] [Related]
17. Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. Li QM, Liu BB, Wu Y, Zou ZR. J Integr Plant Biol; 2008 Oct; 50(10):1307-17. PubMed ID: 19017118 [Abstract] [Full Text] [Related]
19. Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Naumann JC, Young DR, Anderson JE. Physiol Plant; 2007 Nov; 131(3):422-33. PubMed ID: 18251881 [Abstract] [Full Text] [Related]
20. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves. Flor-Henry M, McCabe TC, de Bruxelles GL, Roberts MR. BMC Plant Biol; 2004 Nov 18; 4():19. PubMed ID: 15550176 [Abstract] [Full Text] [Related] Page: [Next] [New Search]