These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 17111151

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The effect of ageing on retinal nerve fibre layer thickness: an evaluation by scanning laser polarimetry with variable corneal compensation.
    Da Pozzo S, Iacono P, Marchesan R, Minutola D, Ravalico G.
    Acta Ophthalmol Scand; 2006 Jun; 84(3):375-9. PubMed ID: 16704701
    [Abstract] [Full Text] [Related]

  • 3. Scanning laser polarimetry with variable corneal compensation in primary angle-closure glaucoma.
    Liu CJ, Cheng CY, Hsu WM.
    Ophthalmology; 2008 Aug; 115(8):1334-9. PubMed ID: 18201763
    [Abstract] [Full Text] [Related]

  • 4. The occurrence and features of the atypical birefringence pattern in scanning laser polarimetry using GD × VCC in healthy children and its impact on the retinal nerve fiber layer thickness values.
    Filous A, Hlozánek M, Hladíková M.
    J Glaucoma; 2010 Sep; 19(7):450-5. PubMed ID: 20164803
    [Abstract] [Full Text] [Related]

  • 5. Retinal Blood Vessel Distribution Correlates With the Peripapillary Retinal Nerve Fiber Layer Thickness Profile as Measured With GDx VCC and ECC.
    Resch H, Pereira I, Weber S, Holzer S, Fischer G, Vass C.
    J Glaucoma; 2015 Sep; 24(5):389-95. PubMed ID: 25719231
    [Abstract] [Full Text] [Related]

  • 6. Peripapillary retinal nerve fiber layer thickness analysis with scanning laser polarimetry (GDx VCC) in normal children.
    Salvetat ML, Zeppieri M, Felletti M, Parisi L, Brusini P.
    J Glaucoma; 2010 Jan; 19(1):51-7. PubMed ID: 19373102
    [Abstract] [Full Text] [Related]

  • 7. Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation.
    Bagga H, Greenfield DS, Feuer WJ.
    Am J Ophthalmol; 2005 Mar; 139(3):437-46. PubMed ID: 15767051
    [Abstract] [Full Text] [Related]

  • 8. Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation.
    Mai TA, Reus NJ, Lemij HG.
    Ophthalmology; 2007 Nov; 114(11):1988-93. PubMed ID: 17459481
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation.
    Reus NJ, Zhou Q, Lemij HG.
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3870-7. PubMed ID: 16936099
    [Abstract] [Full Text] [Related]

  • 11. The retinal nerve fibre layer thickness in glaucomatous hydrophthalmic eyes assessed by scanning laser polarimetry with variable corneal compensation in comparison with age-matched healthy children.
    Hložánek M, Ošmera J, Ležatková P, Sedláčková P, Filouš A.
    Acta Ophthalmol; 2012 Dec; 90(8):709-12. PubMed ID: 21418149
    [Abstract] [Full Text] [Related]

  • 12. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in tilted disk.
    Yu S, Tanabe T, Hangai M, Morishita S, Kurimoto Y, Yoshimura N.
    Am J Ophthalmol; 2006 Sep; 142(3):475-82. PubMed ID: 16935594
    [Abstract] [Full Text] [Related]

  • 13. Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes.
    Bowd C, Zangwill LM, Weinreb RN.
    Arch Ophthalmol; 2003 Jul; 121(7):961-6. PubMed ID: 12860798
    [Abstract] [Full Text] [Related]

  • 14. The influence of low to moderate myopia on retinal nerve fiber layer as assessed by scanning laser polarimetry with variable corneal compensator.
    Vetrugno M, Trabucco T, Sisto D, Troysi V, Sborgia G.
    Ophthalmologica; 2007 Jul; 221(3):190-4. PubMed ID: 17440282
    [Abstract] [Full Text] [Related]

  • 15. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects.
    Kook MS, Cho HS, Seong M, Choi J.
    Ophthalmology; 2005 Nov; 112(11):1970-8. PubMed ID: 16185765
    [Abstract] [Full Text] [Related]

  • 16. The effect of atypical birefringence patterns on glaucoma detection using scanning laser polarimetry with variable corneal compensation.
    Bowd C, Medeiros FA, Weinreb RN, Zangwill LM.
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):223-7. PubMed ID: 17197536
    [Abstract] [Full Text] [Related]

  • 17. Retinal imaging by laser polarimetry and optical coherence tomography evidence of axonal degeneration in multiple sclerosis.
    Zaveri MS, Conger A, Salter A, Frohman TC, Galetta SL, Markowitz CE, Jacobs DA, Cutter GR, Ying GS, Maguire MG, Calabresi PA, Balcer LJ, Frohman EM.
    Arch Neurol; 2008 Jul; 65(7):924-8. PubMed ID: 18625859
    [Abstract] [Full Text] [Related]

  • 18. Relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertensive patients.
    Henderson PA, Medeiros FA, Zangwill LM, Weinreb RN.
    Ophthalmology; 2005 Feb; 112(2):251-6. PubMed ID: 15691559
    [Abstract] [Full Text] [Related]

  • 19. Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease.
    Bagga H, Greenfield DS, Knighton RW.
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):1969-76. PubMed ID: 12714631
    [Abstract] [Full Text] [Related]

  • 20. The study of retinal nerve fiber layer thickness of normal eyes using scanning laser polarimetry.
    Liu X, Huang J, Ge J, Ling Y, Zheng X.
    Yan Ke Xue Bao; 2006 Sep; 22(3):175-83. PubMed ID: 17162903
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.