These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


742 related items for PubMed ID: 17119645

  • 21. Comparison between computational alanine scanning and per-residue binding free energy decomposition for protein-protein association using MM-GBSA: application to the TCR-p-MHC complex.
    Zoete V, Michielin O.
    Proteins; 2007 Jun 01; 67(4):1026-47. PubMed ID: 17377991
    [Abstract] [Full Text] [Related]

  • 22. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
    Irudayam SJ, Henchman RH.
    J Phys Condens Matter; 2010 Jul 21; 22(28):284108. PubMed ID: 21399280
    [Abstract] [Full Text] [Related]

  • 23. Coupling nonpolar and polar solvation free energies in implicit solvent models.
    Dzubiella J, Swanson JM, McCammon JA.
    J Chem Phys; 2006 Feb 28; 124(8):084905. PubMed ID: 16512740
    [Abstract] [Full Text] [Related]

  • 24. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis.
    MacKerell AD, Sommer MS, Karplus M.
    J Mol Biol; 1995 Apr 07; 247(4):774-807. PubMed ID: 7723031
    [Abstract] [Full Text] [Related]

  • 25. AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling.
    Gallicchio E, Levy RM.
    J Comput Chem; 2004 Mar 07; 25(4):479-99. PubMed ID: 14735568
    [Abstract] [Full Text] [Related]

  • 26. Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA.
    Baginski M, Fogolari F, Briggs JM.
    J Mol Biol; 1997 Nov 28; 274(2):253-67. PubMed ID: 9398531
    [Abstract] [Full Text] [Related]

  • 27. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters.
    Geerke DP, van Gunsteren WF.
    J Phys Chem B; 2007 Jun 14; 111(23):6425-36. PubMed ID: 17508737
    [Abstract] [Full Text] [Related]

  • 28. Calculation of the aqueous solvation energy and entropy, as well as free energy, of simple polar solutes.
    Wan S, Stote RH, Karplus M.
    J Chem Phys; 2004 Nov 15; 121(19):9539-48. PubMed ID: 15538876
    [Abstract] [Full Text] [Related]

  • 29. The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators.
    Gallicchio E, Zhang LY, Levy RM.
    J Comput Chem; 2002 Apr 15; 23(5):517-29. PubMed ID: 11948578
    [Abstract] [Full Text] [Related]

  • 30. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O, Weiser J, Shenkin P, Kolossváry I, Still WC.
    J Comput Chem; 2002 Jan 30; 23(2):214-21. PubMed ID: 11924735
    [Abstract] [Full Text] [Related]

  • 31. Exhaustive mutagenesis in silico: multicoordinate free energy calculations on proteins and peptides.
    Pitera JW, Kollman PA.
    Proteins; 2000 Nov 15; 41(3):385-97. PubMed ID: 11025549
    [Abstract] [Full Text] [Related]

  • 32. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S, Mikulskis P, Hu L, Kongsted J, Söderhjelm P, Ryde U.
    J Am Chem Soc; 2011 Aug 24; 133(33):13081-92. PubMed ID: 21728337
    [Abstract] [Full Text] [Related]

  • 33. Calculation of the hydration free energy difference between pyridine and its methyl-substituted derivatives by computer simulation methods.
    Partay L, Jedlovszky P, Jancsó G.
    J Phys Chem B; 2005 Apr 28; 109(16):8097-102. PubMed ID: 16851946
    [Abstract] [Full Text] [Related]

  • 34. Evaluation of configurational entropy methods from peptide folding-unfolding simulation.
    Li DW, Khanlarzadeh M, Wang J, Huo S, Brüschweiler R.
    J Phys Chem B; 2007 Dec 13; 111(49):13807-13. PubMed ID: 18020439
    [Abstract] [Full Text] [Related]

  • 35. Redox entropy of plastocyanin: developing a microscopic view of mesoscopic polar solvation.
    LeBard DN, Matyushov DV.
    J Chem Phys; 2008 Apr 21; 128(15):155106. PubMed ID: 18433287
    [Abstract] [Full Text] [Related]

  • 36. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X, Roux B.
    J Mol Recognit; 2010 Apr 21; 23(2):128-41. PubMed ID: 20151411
    [Abstract] [Full Text] [Related]

  • 37. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E, Klähn M, Warshel A.
    J Phys Chem B; 2006 Feb 16; 110(6):2934-41. PubMed ID: 16471904
    [Abstract] [Full Text] [Related]

  • 38. Configurational entropy and cooperativity between ligand binding and dimerization in glycopeptide antibiotics.
    Jusuf S, Loll PJ, Axelsen PH.
    J Am Chem Soc; 2003 Apr 02; 125(13):3988-94. PubMed ID: 12656635
    [Abstract] [Full Text] [Related]

  • 39. The effect of water displacement on binding thermodynamics: concanavalin A.
    Li Z, Lazaridis T.
    J Phys Chem B; 2005 Jan 13; 109(1):662-70. PubMed ID: 16851059
    [Abstract] [Full Text] [Related]

  • 40. Hydration in discrete water. A mean field, cellular automata based approach to calculating hydration free energies.
    Setny P, Zacharias M.
    J Phys Chem B; 2010 Jul 08; 114(26):8667-75. PubMed ID: 20552986
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 38.