These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
850 related items for PubMed ID: 17122112
1. Phosphatase-mediated crosstalk control of ERK and p38 MAPK signaling in corneal epithelial cells. Wang Z, Yang H, Tachado SD, Capó-Aponte JE, Bildin VN, Koziel H, Reinach PS. Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5267-75. PubMed ID: 17122112 [Abstract] [Full Text] [Related]
2. Dependence of EGF-induced increases in corneal epithelial proliferation and migration on GSK-3 inactivation. Wang Z, Yang H, Zhang F, Pan Z, Capó-Aponte J, Reinach PS. Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4828-35. PubMed ID: 19443725 [Abstract] [Full Text] [Related]
3. Dipyridamole activation of mitogen-activated protein kinase phosphatase-1 mediates inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression in RAW 264.7 cells. Chen TH, Kao YC, Chen BC, Chen CH, Chan P, Lee HM. Eur J Pharmacol; 2006 Jul 17; 541(3):138-46. PubMed ID: 16765938 [Abstract] [Full Text] [Related]
4. Differential regulation of ERK1/2 and p38(MAPK) by components of the Rho signaling pathway during sphingosine-1-phosphate-induced smooth muscle cell migration. Galaria II, Fegley AJ, Nicholl SM, Roztocil E, Davies MG. J Surg Res; 2004 Dec 17; 122(2):173-9. PubMed ID: 15555614 [Abstract] [Full Text] [Related]
5. Protein kinase Cdelta-mediated proteasomal degradation of MAP kinase phosphatase-1 contributes to glutamate-induced neuronal cell death. Choi BH, Hur EM, Lee JH, Jun DJ, Kim KT. J Cell Sci; 2006 Apr 01; 119(Pt 7):1329-40. PubMed ID: 16537649 [Abstract] [Full Text] [Related]
6. JNK MAPK signaling contributes in vivo to injury-induced corneal epithelial migration. Okada Y, Saika S, Shirai K, Yamanaka O, Kitano A, Wang Z, Yang H, Reinach P. Ophthalmic Res; 2009 Apr 01; 42(4):185-92. PubMed ID: 19672126 [Abstract] [Full Text] [Related]
7. Urokinase-induced smooth muscle cell responses require distinct signaling pathways: a role for the epidermal growth factor receptor. Nicholl SM, Roztocil E, Davies MG. J Vasc Surg; 2005 Apr 01; 41(4):672-81. PubMed ID: 15874933 [Abstract] [Full Text] [Related]
8. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation. Hutter D, Chen P, Barnes J, Liu Y. Biochem J; 2000 Nov 15; 352 Pt 1(Pt 1):155-63. PubMed ID: 11062068 [Abstract] [Full Text] [Related]
9. The antiproliferative effect of sildenafil on pulmonary artery smooth muscle cells is mediated via upregulation of mitogen-activated protein kinase phosphatase-1 and degradation of extracellular signal-regulated kinase 1/2 phosphorylation. Li B, Yang L, Shen J, Wang C, Jiang Z. Anesth Analg; 2007 Oct 15; 105(4):1034-41, table of contents. PubMed ID: 17898384 [Abstract] [Full Text] [Related]
10. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Vicent S, Garayoa M, López-Picazo JM, Lozano MD, Toledo G, Thunnissen FB, Manzano RG, Montuenga LM. Clin Cancer Res; 2004 Jun 01; 10(11):3639-49. PubMed ID: 15173070 [Abstract] [Full Text] [Related]
11. ERK1/2-driven and MKP-mediated inhibition of EGF-induced ERK5 signaling in human proximal tubular cells. Sarközi R, Miller B, Pollack V, Feifel E, Mayer G, Sorokin A, Schramek H. J Cell Physiol; 2007 Apr 01; 211(1):88-100. PubMed ID: 17131384 [Abstract] [Full Text] [Related]
12. Proteasome inhibitors induce a p38 mitogen-activated protein kinase (MAPK)-dependent anti-apoptotic program involving MAPK phosphatase-1 and Akt in models of breast cancer. Shi YY, Small GW, Orlowski RZ. Breast Cancer Res Treat; 2006 Nov 01; 100(1):33-47. PubMed ID: 16807678 [Abstract] [Full Text] [Related]
13. Cellular defense against H2O2-induced apoptosis via MAP kinase-MKP-1 pathway. Xu Q, Konta T, Nakayama K, Furusu A, Moreno-Manzano V, Lucio-Cazana J, Ishikawa Y, Fine LG, Yao J, Kitamura M. Free Radic Biol Med; 2004 Apr 15; 36(8):985-93. PubMed ID: 15059639 [Abstract] [Full Text] [Related]
14. C5a differentially stimulates the ERK1/2 and p38 MAPK phosphorylation through independent signaling pathways to induced chemotactic migration in RAW264.7 macrophages. Chiou WF, Tsai HR, Yang LM, Tsai WJ. Int Immunopharmacol; 2004 Oct 15; 4(10-11):1329-41. PubMed ID: 15313431 [Abstract] [Full Text] [Related]
15. Potential role for mitogen-activated protein kinase phosphatase-1 in the development of atherosclerotic lesions in mouse models. Reddy ST, Nguyen JT, Grijalva V, Hough G, Hama S, Navab M, Fogelman AM. Arterioscler Thromb Vasc Biol; 2004 Sep 15; 24(9):1676-81. PubMed ID: 15242861 [Abstract] [Full Text] [Related]
16. Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Givant-Horwitz V, Davidson B, Reich R. Cancer Res; 2004 May 15; 64(10):3572-9. PubMed ID: 15150114 [Abstract] [Full Text] [Related]
17. Doxycycline inhibits TGF-beta1-induced MMP-9 via Smad and MAPK pathways in human corneal epithelial cells. Kim HS, Luo L, Pflugfelder SC, Li DQ. Invest Ophthalmol Vis Sci; 2005 Mar 15; 46(3):840-8. PubMed ID: 15728539 [Abstract] [Full Text] [Related]
18. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Chen L, Liu L, Yin J, Luo Y, Huang S. Int J Biochem Cell Biol; 2009 Jun 15; 41(6):1284-95. PubMed ID: 19038359 [Abstract] [Full Text] [Related]
19. Involvement of MAPKs in endostatin-mediated regulation of blood-retinal barrier function. Campbell M, Collery R, McEvoy A, Gardiner TA, Stitt AW, Brankin B. Curr Eye Res; 2006 Dec 15; 31(12):1033-45. PubMed ID: 17169842 [Abstract] [Full Text] [Related]